Download presentation
Presentation is loading. Please wait.
Published byBùi Hiền Modified over 5 years ago
1
Structural Optimization Design ( Structural Analysis & Optimization )
Hai Huang School of Astronautics, BUAA
2
Mai functions of Structures and mechanisms in a spacecraft
Preserving the outline configuration of the spacecraft; Providing the space to install or mount other subsystems or equipments, meanwhile guaranteeing the precision of the installation; supporting and protecting equipments, and ensuring their safety under various loading cases; providing enough stiffness, strength as well as thermal protection, and ensuring the integrality of the spacecraft; And supplying other functions such as unlocking, deploying, releasing, separation, pointing and locking of solar array or antenna. 2 2019年2月26日 2019年2月26日
3
Traditional Structural Design
Question: Best design? Could be further improved? Structural optimization (Structural Synthesis, Structural Optimization Design, Structural Design Optimization) —— a kind of design technology to find the best solutions for structure systems to be designed —> Structural Analysis —> Design Adjust Initial Design —> Re-Analysis —>Re-Adjust … —> Until Satisfying 2019年2月26日
4
Chapter 1 Introduction to Structural Optimization
§1.1 General concepts of Structural Optimization Optimization —— generally refers to find the best solution for projects, designs, products etc. 4 Examples (1) Bus routes (2) Area of rectangle (3) Beam sectional function (4) Engineering design 2019年2月26日
5
(1) Bus routes 2019年2月26日
6
(2) Area of rectangle 2019年2月26日
7
Fig. 1.3 Thin walled Structural Design
(3) Engineering design Fig Thin walled Structural Design 2019年2月26日
8
§1.2 Mathematical Basis of Optimization
1.2.1 Mathematical Programming Find —Design Variables —Objective Function (NLP) —Constraints —Constraint functions 2019年2月26日
9
(a) convex set (b) non-convex set
, 1.2.2 Definitions in optimization Convex Set A set is said to be convex if, for arbitrary two points , , in S, for (a) convex set (b) non-convex set 2019年2月26日
10
(a) convex-like function (b) non convex-like function
Convex-like Functions (a) convex-like function (b) non convex-like function Convex –like Function 2019年2月26日
11
Convex Set ---- feasible domain
Convex Programming Convex Set ---- feasible domain Convex-like Function---- objective function 2019年2月26日
12
Structural Analysis and Optimization
Quick Review
13
Theorem 1 Suppose and are differentiable, and is the optimum solution of (NLP), at which the constraints meet the eligibility requirement, then it must exist a set of parameters called Lagrange multipliers which let Kuhn-Tucker (KT) condition be satisfied. 2019年2月26日
14
Kuhn-Tucker conditions
If is the optimum of (NLP), and at the point meet the eligibility requirement, then 2019年2月26日
15
The gradients of objective and constraint functions at
16
Theorem 3 If problem (NLP) is a convex programming, then any local optimum of the problem must be a global minimum; furthermore if and only if the function is strictly convex on the convex feasible domain R, the minimum of the problem (NLP) is unique. Theorem 4 If problem (NLP) is a convex programming, and satisfies Kuhn- Tucker condition (KT), then must be the optimum of problem (NLP). 2019年2月26日
17
Sufficient conditions to meet eligibility
2019年2月26日
18
Traditional Structural Design
Structural optimization (Structural Synthesis, Structural Optimization Design, Structural Design Optimization) ——Combining the theories of mathematical programming and the methods of structural analysis to seek the best feasible design according to a selected quantitative measure of effectiveness for loaded structures with computers as tools. —> Structural Analysis —> Design Adjust Initial Design —> Re-Analysis —>Re-Adjust … —> Until Satisfying 2019年2月26日
19
§1.3 Model of typical structural optimization
Optimum objective —structural weight Constraint conditions —strength, deformation, dynamic (vibration) performance, etc. Design variables (1) Cross-sectional Areas (2) Shape variables (3) Topology variables 2019年2月26日
20
3 Kinds of Structural Optimization
1。 Cross-sectional Areas 10 Bar truss 2019年2月26日
21
3 Kinds of Structural Optimization
2。 Shape variables 15 Bar truss 2019年2月26日
22
3 Kinds of Structural Optimization
3。 Topology variables Original After Optimization 2019年2月26日
23
Model of typical structural optimization is a mathematical programming
Characteristics 1。 implicit function 2。Large number of variables 3。 Large number of constraints 2019年2月26日
24
Characteristics of Typical Structural Optimization
(1) Constraint function usually is a complex non-linearly implicit function of design variables. Only numerical solutions are available using structural analysis such as FEM. 2019年2月26日
25
(2) Design variable space is usually very high dimensional.
2019年2月26日
26
Solution with Computer as A Tool
(3) Automatic design produces by using computers and develops with computer technology Numerical Optimization Computer Code + FEM ==》 Solution with Computer as A Tool 2019年2月26日
27
E-3 Navigation Satellite
Compacted state Deployed state 2019年2月26日
28
History of structural optimization
(1) in 1960, L.A.Scmmit introduced the theories of mathematical programming into structural design (2) Criterion methods (60s~70s) (3) Approximation concepts ( 1976) (4) Programming methods (after 1976) (5) Dual method (proposed in 1980) (6) Applications and Topology research 2019年2月26日
29
Concerned research areas
Efficient numerical algorithm Adaptive ability of the methods Practical engineering problem applications Sensitivities analysis Shape and topology optimization. 2019年2月26日
30
Typical topics the course will conduct
(1) Criterion methods (2) Sensitivity analysis Calculating for derivatives of primal constraint functions respect to design variables. (3) Approximation concepts and programming methods (4) Dual methods (5) Two-level multi-point Approximation method 2019年2月26日
31
Thank You for your attention !
2019年2月26日
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.