Download presentation
Presentation is loading. Please wait.
1
Congruence in Right Triangles
Skill 24
2
Objective HSG-SRT.5: Students are responsible for proving right triangles are congruent using the Hypotenuse-Leg Theorem and find and use relationships in similar right triangles.
3
Theorem 22: Hypotenuse Leg Theorem
HL Theorem If hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent. P Q X R Y Z If βπ·πΈπΉ and βπΏππ are right triangles π·πΉ β πΏπ , and π·πΈ β πΏπ Then βπ¨π©πͺββπ«π¬π
4
Conditions for HL Theorem
There are two right triangles The triangles have congruent hypotenuses There is one pair of congruent legs P Q X R Y Z
5
Example 1; Using the HL Theorem
Given: β π΄π·πΆ and β π΅π·πΆ are rt. β βs in a rt. β and π΄πΆ β
π΅πΆ Prove: βπ΄π·πΆβ
βπ΅π·πΆ Statement Reason 1) β π΄π·πΆ & β π΅π·πΆ are right angles in a right triangle and π΄πΆ β
π΅πΆ 1) Given 2) π·πΆ β π·πΆ 2) Reflexive Prop. A B C D 3) βπ΄π·πΆβ
βπ΅π·πΆ 3) HL Theorem
6
Example 2; Using the HL Theorem
Given: β ππ
π & β π
ππ are rt. β βs in a right β and ππ β
ππ
Prove: βππ
πβ
βπ
ππ Statement Reason 1) β ππ
π & β π
ππ are right angles in a right triangle and ππ β
ππ
1) Given 2) ππ
β ππ
2) Reflexive Prop. 3) βππ
πβ
βπ
ππ 3) HL Theorem S R P Q
7
Example 3; Writing a Proof with HL Theorem
Given: π΅πΈ bisects π΄π· at C, π΄π΅ β π΅πΆ , π·πΈ β πΈπΆ , π΄π΅ β
π·πΈ Prove: βπ΄π΅πΆβ
βπ·πΈπΆ Statement Reason 1) π΅πΈ bisects π΄π· at C, π΄π΅ β π΅πΆ , π·πΈ β πΈπΆ , π΄π΅ β
π·πΈ 1) Given 2) β π΅ πππ β πΈ are rt. β βs 2) Def. Perpendicular 3) π΄πΆ β
π·πΈ 3) Def. Bisector 4) βπ΄π΅πΆ and βπ·πΈπΆ are right triangles B C A D E 4) Def. Right β 5) βπ΄π΅πΆβ
βπ·πΈπΆ 5) HL Theorem
8
Example 4; Writing a proof with HL Theorem
Given: πΆπ· β
πΈπ΄ , π΄π· is the perp.bisector of πΆπΈ Prove: βπΆπ΅π·β
βπΈπ΅π΄ Statement Reason 1) πΆπ· β
πΈπ΄ , π΄π· is the perpendicular bisector of πΆπΈ 1) Given 2) π΄π΅ β π·π΅ and β ππ
π & β π
ππ are right angles 2) Def. Perp. Bisector 3) βπΆπ΅π· and βπΈπ΅π΄ are right triangles 3) Def. Right β E B C A D 4) βπΆπ΅π·β
βπΈπ΅π΄ 4) HL Theorem
9
#24: Congruence in Right Triangles
Questions? Summarize Notes Homework Video Quiz
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.