Presentation is loading. Please wait.

Presentation is loading. Please wait.

Congruence in Right Triangles

Similar presentations


Presentation on theme: "Congruence in Right Triangles"β€” Presentation transcript:

1 Congruence in Right Triangles
Skill 24

2 Objective HSG-SRT.5: Students are responsible for proving right triangles are congruent using the Hypotenuse-Leg Theorem and find and use relationships in similar right triangles.

3 Theorem 22: Hypotenuse Leg Theorem
HL Theorem If hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent. P Q X R Y Z If βˆ†π‘·π‘Έπ‘Ή and βˆ†π‘Ώπ’€π’ are right triangles 𝑷𝑹 β‰Œ 𝑿𝒁 , and 𝑷𝑸 β‰Œ 𝑿𝒀 Then βˆ†π‘¨π‘©π‘ͺβ‰Œβˆ†π‘«π‘¬π‘­

4 Conditions for HL Theorem
There are two right triangles The triangles have congruent hypotenuses There is one pair of congruent legs P Q X R Y Z

5 Example 1; Using the HL Theorem
Given: ∠𝐴𝐷𝐢 and ∠𝐡𝐷𝐢 are rt. βˆ β€™s in a rt. βˆ† and 𝐴𝐢 β‰… 𝐡𝐢 Prove: βˆ†π΄π·πΆβ‰…βˆ†π΅π·πΆ Statement Reason 1) ∠𝐴𝐷𝐢 & ∠𝐡𝐷𝐢 are right angles in a right triangle and 𝐴𝐢 β‰… 𝐡𝐢 1) Given 2) 𝐷𝐢 β‰Œ 𝐷𝐢 2) Reflexive Prop. A B C D 3) βˆ†π΄π·πΆβ‰…βˆ†π΅π·πΆ 3) HL Theorem

6 Example 2; Using the HL Theorem
Given: βˆ π‘ƒπ‘…π‘† & βˆ π‘…π‘ƒπ‘„ are rt. βˆ β€™s in a right βˆ† and 𝑆𝑃 β‰… 𝑄𝑅 Prove: βˆ†π‘ƒπ‘…π‘†β‰…βˆ†π‘…π‘ƒπ‘„ Statement Reason 1) βˆ π‘ƒπ‘…π‘† & βˆ π‘…π‘ƒπ‘„ are right angles in a right triangle and 𝑆𝑃 β‰… 𝑄𝑅 1) Given 2) 𝑃𝑅 β‰Œ 𝑃𝑅 2) Reflexive Prop. 3) βˆ†π‘ƒπ‘…π‘†β‰…βˆ†π‘…π‘ƒπ‘„ 3) HL Theorem S R P Q

7 Example 3; Writing a Proof with HL Theorem
Given: 𝐡𝐸 bisects 𝐴𝐷 at C, 𝐴𝐡 ⏊ 𝐡𝐢 , 𝐷𝐸 ⏊ 𝐸𝐢 , 𝐴𝐡 β‰… 𝐷𝐸 Prove: βˆ†π΄π΅πΆβ‰…βˆ†π·πΈπΆ Statement Reason 1) 𝐡𝐸 bisects 𝐴𝐷 at C, 𝐴𝐡 ⏊ 𝐡𝐢 , 𝐷𝐸 ⏊ 𝐸𝐢 , 𝐴𝐡 β‰… 𝐷𝐸 1) Given 2) ∠𝐡 π‘Žπ‘›π‘‘ ∠𝐸 are rt. βˆ β€™s 2) Def. Perpendicular 3) 𝐴𝐢 β‰… 𝐷𝐸 3) Def. Bisector 4) βˆ†π΄π΅πΆ and βˆ†π·πΈπΆ are right triangles B C A D E 4) Def. Right βˆ† 5) βˆ†π΄π΅πΆβ‰…βˆ†π·πΈπΆ 5) HL Theorem

8 Example 4; Writing a proof with HL Theorem
Given: 𝐢𝐷 β‰… 𝐸𝐴 , 𝐴𝐷 is the perp.bisector of 𝐢𝐸 Prove: βˆ†πΆπ΅π·β‰…βˆ†πΈπ΅π΄ Statement Reason 1) 𝐢𝐷 β‰… 𝐸𝐴 , 𝐴𝐷 is the perpendicular bisector of 𝐢𝐸 1) Given 2) 𝐴𝐡 β‰Œ 𝐷𝐡 and βˆ π‘ƒπ‘…π‘† & βˆ π‘…π‘ƒπ‘„ are right angles 2) Def. Perp. Bisector 3) βˆ†πΆπ΅π· and βˆ†πΈπ΅π΄ are right triangles 3) Def. Right βˆ† E B C A D 4) βˆ†πΆπ΅π·β‰…βˆ†πΈπ΅π΄ 4) HL Theorem

9 #24: Congruence in Right Triangles
Questions? Summarize Notes Homework Video Quiz


Download ppt "Congruence in Right Triangles"

Similar presentations


Ads by Google