Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mean Field Approximation

Similar presentations


Presentation on theme: "Mean Field Approximation"β€” Presentation transcript:

1 Mean Field Approximation
Defining mean field (molecular field or effective field) & mean field Hamiltonian 𝑆 𝑖 = 𝑆 𝑖 + 𝑆 𝑖 βˆ’ 𝑆 𝑖 𝑆 𝑖 𝑆 𝑗 = 𝑆 𝑖 + 𝑆 𝑖 βˆ’ 𝑆 𝑖 𝑆 𝑗 + 𝑆 𝑗 βˆ’ 𝑆 𝑗 𝑆 𝑗 = 𝑆 𝑗 + 𝑆 𝑗 βˆ’ 𝑆 𝑗 𝑆 𝑖 𝑆 𝑗 = 𝑆 𝑖 𝑆 𝑗 + 𝑆 𝑖 𝑆 𝑗 βˆ’ 𝑆 𝑗 + 𝑆 𝑗 𝑆 𝑖 βˆ’ 𝑆 𝑖 + 𝑆 𝑖 βˆ’ 𝑆 𝑖 𝑆 𝑗 βˆ’ 𝑆 𝑗 term quadratic in fluctuations 𝑆 𝑖 𝑆 𝑗 β‰ˆ 𝑆 𝑖 𝑆 𝑗 + 𝑆 𝑖 𝑆 𝑗 βˆ’ 𝑆 𝑗 + 𝑆 𝑗 𝑆 𝑖 βˆ’ 𝑆 𝑖

2 Mean field Hamiltonian
𝐻=βˆ’ 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 𝑆 𝑗 βˆ’β„Ž 𝑖 𝑆 𝑖 𝐻 π‘šπ‘“ =βˆ’ 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 𝑆 𝑗 + 𝑆 𝑖 𝑆 𝑗 βˆ’ 𝑆 𝑗 + 𝑆 𝑗 𝑆 𝑖 βˆ’ 𝑆 𝑖 βˆ’β„Ž 𝑖 𝑆 𝑖 Note I dropped here the factor Β½ introduced previously to keep the notation simple. How is Hmf simplifying the problem? 𝑆 𝑗 = 𝑆 = S av independent of summation index 𝐻 π‘šπ‘“ =βˆ’ 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 𝑆 𝑗 + 𝑆 𝑖 𝑆 𝑗 βˆ’ 𝑆 𝑗 + 𝑆 𝑗 𝑆 𝑖 βˆ’ 𝑆 𝑖 βˆ’β„Ž 𝑖 𝑆 𝑖 =βˆ’ 𝑆 2 𝑖,𝑗 𝐽 𝑖𝑗 + 𝑆 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑗 βˆ’ 𝑆 2 𝑖,𝑗 𝐽 𝑖𝑗 + 𝑆 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 βˆ’ 𝑆 2 𝑖,𝑗 𝐽 𝑖𝑗 βˆ’β„Ž 𝑖 𝑆 𝑖 =βˆ’ 𝑆 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑗 + 𝑆 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 βˆ’ 𝑆 2 𝑖,𝑗 𝐽 𝑖𝑗 βˆ’β„Ž 𝑖 𝑆 𝑖 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑗 = 𝑗 𝑆 𝑗 𝑖 𝐽 𝑖𝑗 = 𝑖 𝑆 𝑖 𝑗 𝐽 𝑖𝑗 = 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 using

3 with z= # of nearest neighbors
=βˆ’ 𝑆 𝑖 2 𝑗 𝐽 𝑖𝑗 𝑆 𝑗 βˆ’β„Ž 𝑖 𝑆 𝑖 + 𝐸 0 𝐸 0 = 𝑆 2 𝑖,𝑗 𝐽 𝑖𝑗 where independent of i,j 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑗 = 𝑖,𝑗 𝐽 𝑖𝑗 𝑆 𝑖 𝐻 π‘šπ‘“ =βˆ’ 𝑆 𝑖 2 𝑗 𝐽 𝑖𝑗 𝑆 𝑖 βˆ’β„Ž 𝑖 𝑆 𝑖 + 𝐸 0 πœ‚ 𝑖 =β„Ž+ 𝑆 𝑗 2 𝐽 𝑖𝑗 with the mean field For nearest neighbor interaction identical for all nearest neighbors such that, e.g., 2J12=J 𝑗 2 𝐽 𝑖𝑗 =𝑧𝐽 with z= # of nearest neighbors πœ‚=β„Ž+ 𝑆 𝑧𝐽 𝐻 π‘šπ‘“ =βˆ’ 𝑖 πœ‚ 𝑖 𝑆 𝑖 + 𝐸 0 =βˆ’πœ‚ 𝑖 𝑆 𝑖 + 𝐸 0

4 is formally identical to non-interacting spins in a field
𝐻 π‘šπ‘“ =βˆ’πœ‚ 𝑖 𝑆 𝑖 + 𝐸 0 Thermodynamics of is formally identical to non-interacting spins in a field (paramagnetism) For Ising spins with 𝑆 𝑖 Β±1 𝑆 𝑖 = 𝑆 = 𝑆 𝑖 =βˆ’1 +1 𝑆 𝑖 𝑒 π›½πœ‚ 𝑆 𝑖 𝑆 𝑖 =βˆ’1 +1 𝑒 π›½πœ‚ = βˆ’ 𝑒 βˆ’π›½πœ‚ + 𝑒 π›½πœ‚ 𝑒 βˆ’π›½πœ‚ + 𝑒 π›½πœ‚ = tanh π›½πœ‚ 𝑆 π‘Žπ‘£ = tanh 𝛽 β„Ž+ 𝑆 𝑧𝐽 Zero field solution (h=0) 𝑆 = tanh 𝛽 𝑆 𝑧𝐽

5 Let’s explore 𝑦= tanh π‘Žπ‘¦ on variation of parameter a a=0.7 a=0.5 a=1.0 a=1.2 Y=0.66 Y=-0.66

6 For a<1 <S>=0 only solution
For a>1 two solution for non-zero <S> It can be shown that the non-trivial solutions minimize the free energy a=1 defines the critical temperature TC π‘Ž=𝑧𝐽𝛽=1 𝑇 𝐢 = 𝑧𝐽 π‘˜ 𝐡 in mean field approximation

7 Discussion of the thermodynamics
T near the critical temperature TC 𝑆 ->0 If we allow for a small applied magnetic field h such that hβ‰ͺ 𝑆 π‘Žπ‘£ 𝑧𝐽 we can explore magnetization and susceptibility near TC tanh π‘₯ = 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ β‰ˆ 1+π‘₯ π‘₯ π‘₯ 3 βˆ’1+π‘₯βˆ’ 1 2 π‘₯ π‘₯ 3 1+π‘₯ π‘₯ π‘₯ 3 +1βˆ’π‘₯ π‘₯ 2 βˆ’ 1 6 π‘₯ 3 𝑆 = tanh 𝛽 β„Ž+ 𝑆 𝑧𝐽 xβ‰ˆ0 = 2π‘₯ π‘₯ π‘₯ 2 =π‘₯ π‘₯ π‘₯ 2 =π‘₯ π‘₯ π‘₯ β‰ˆπ‘₯ π‘₯ 2 1βˆ’ π‘₯ 2 2 tanh π‘₯β‰ˆπ‘₯βˆ’ π‘₯ … =π‘₯ π‘₯ 2 βˆ’ π‘₯ 2 2 βˆ’ π‘₯ 4 β‰ˆπ‘₯ π‘₯ 2 βˆ’ π‘₯ =π‘₯ 1βˆ’ 1 3 π‘₯ 2 tanh 𝛽 β„Ž+ 𝑆 𝑧𝐽 β‰ˆπ›½ β„Ž+ 𝑆 𝑧𝐽 βˆ’ 𝛽 𝑆 𝑧𝐽 3 3 𝑆 =π›½β„Ž+ 𝑆 T C T βˆ’ 𝑆 T C T 3 For T>TC we can neglect the cubic term

8 𝑆 =π›½β„Ž+ 𝑆 𝑆 T C T πœ’βˆ πœ• 𝑆 πœ•β„Ž with πœ’ 1βˆ’ T C T = const k B T β‰ˆ const k B T C πœ• 𝑆 πœ•β„Ž =𝛽+ πœ• 𝑆 πœ•β„Ž T C T πœ’= const k B T +πœ’ T C T πœ’βˆ 𝑇 𝐢 π‘‡βˆ’ 𝑇 𝐢 T-dependence of <S> (∝ magnetization) at h=0 near TC 𝑆 =0 π‘“π‘œπ‘Ÿ 𝑇> 𝑇 𝐢 𝑆 = 𝑆 T C T βˆ’ 𝑆 T C T 3 1= T C T βˆ’ 𝑆 T C T 3 𝑇< 𝑇 𝐢 :

9 1= T C T βˆ’ 𝑆 T C T 3 3 𝑇 T 𝐢 3 =3 𝑇 2 T C 2 βˆ’ 𝑆 2 𝑆 2 =3 𝑇 2 T C 2 1βˆ’ 𝑇 𝑇 𝐢 β‰ˆ3 1βˆ’ 𝑇 𝑇 𝐢 𝑆 ∝ 𝑇 𝐢 βˆ’π‘‡ 𝑆 = tanh 𝑆 𝑇 𝐢 𝑇


Download ppt "Mean Field Approximation"

Similar presentations


Ads by Google