Presentation is loading. Please wait.

Presentation is loading. Please wait.

Merge Sort Solving Recurrences The Master Theorem

Similar presentations


Presentation on theme: "Merge Sort Solving Recurrences The Master Theorem"— Presentation transcript:

1 Merge Sort Solving Recurrences The Master Theorem
CS 332: Algorithms Merge Sort Solving Recurrences The Master Theorem David Luebke /28/2019

2 Merge Sort MergeSort(A, left, right) { if (left < right) {
mid = floor((left + right) / 2); MergeSort(A, left, mid); MergeSort(A, mid+1, right); Merge(A, left, mid, right); } // Merge() takes two sorted subarrays of A and // merges them into a single sorted subarray of A // (how long should this take?) David Luebke /28/2019

3 Merge Sort: Example Show MergeSort() running on the array A = {10, 5, 7, 6, 1, 4, 8, 3, 2, 9}; David Luebke /28/2019

4 Analysis of Merge Sort Statement Effort
So T(n) = (1) when n = 1, and T(n/2) + (n) when n > 1 So what (more succinctly) is T(n)? MergeSort(A, left, right) { T(n) if (left < right) { (1) mid = floor((left + right) / 2); (1) MergeSort(A, left, mid); T(n/2) MergeSort(A, mid+1, right); T(n/2) Merge(A, left, mid, right); (n) } David Luebke /28/2019

5 Recurrences The expression: is a recurrence.
Recurrence: an equation that describes a function in terms of its value on smaller functions David Luebke /28/2019

6 Recurrence Examples David Luebke /28/2019

7 Solving Recurrences Substitution method Iteration method Master method
David Luebke /28/2019

8 Solving Recurrences The substitution method (CLR 4.1)
A.k.a. the “making a good guess method” Guess the form of the answer, then use induction to find the constants and show that solution works Examples: T(n) = 2T(n/2) + (n)  T(n) = (n lg n) T(n) = 2T(n/2 + n  ??? David Luebke /28/2019

9 Solving Recurrences The substitution method (CLR 4.1)
A.k.a. the “making a good guess method” Guess the form of the answer, then use induction to find the constants and show that solution works Examples: T(n) = 2T(n/2) + (n)  T(n) = (n lg n) T(n) = 2T(n/2) + n  T(n) = (n lg n) T(n) = 2T(n/2 + 17) + n  ??? David Luebke /28/2019

10 Solving Recurrences The substitution method (CLR 4.1)
A.k.a. the “making a good guess method” Guess the form of the answer, then use induction to find the constants and show that solution works Examples: T(n) = 2T(n/2) + (n)  T(n) = (n lg n) T(n) = 2T(n/2) + n  T(n) = (n lg n) T(n) = 2T(n/2 + 17) + n  T(n) = (n lg n) David Luebke /28/2019

11 Solving Recurrences Another option is what the book calls the “iteration method” Expand the recurrence Work some algebra to express as a summation Evaluate the summation We will show several examples David Luebke /28/2019

12 s(n) = c + s(n-1) c + c + s(n-2) 2c + s(n-2) 2c + c + s(n-3)
kc + s(n-k) = ck + s(n-k) David Luebke /28/2019

13 So far for n >= k we have What if k = n?
s(n) = ck + s(n-k) What if k = n? s(n) = cn + s(0) = cn David Luebke /28/2019

14 So far for n >= k we have What if k = n? So Thus in general
s(n) = ck + s(n-k) What if k = n? s(n) = cn + s(0) = cn So Thus in general s(n) = cn David Luebke /28/2019

15 = n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)
= n + s(n-1) = n + n-1 + s(n-2) = n + n-1 + n-2 + s(n-3) = n + n-1 + n-2 + n-3 + s(n-4) = … = n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k) David Luebke /28/2019

16 = n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k) =
= n + s(n-1) = n + n-1 + s(n-2) = n + n-1 + n-2 + s(n-3) = n + n-1 + n-2 + n-3 + s(n-4) = … = n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k) = David Luebke /28/2019

17 So far for n >= k we have
David Luebke /28/2019

18 So far for n >= k we have
What if k = n? David Luebke /28/2019

19 So far for n >= k we have
What if k = n? David Luebke /28/2019

20 So far for n >= k we have
What if k = n? Thus in general David Luebke /28/2019

21 T(n) = 2T(n/2) + c 2(2T(n/2/2) + c) + c 22T(n/22) + 2c + c
2kT(n/2k) + (2k - 1)c David Luebke /28/2019

22 So far for n > 2k we have What if k = lg n?
T(n) = 2kT(n/2k) + (2k - 1)c What if k = lg n? T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c = n T(n/n) + (n - 1)c = n T(1) + (n-1)c = nc + (n-1)c = (2n - 1)c David Luebke /28/2019

23 a(aT(n/b/b) + cn/b) + cn a2T(n/b2) + cna/b + cn
a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1) a3T(n/b3) + cn(a2/b2) + cn(a/b + 1) a3T(n/b3) + cn(a2/b2 + a/b + 1) akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 + … + a2/b2 + a/b + 1) David Luebke /28/2019

24 So we have T(n) = akT(n/bk) + cn(ak-1/bk a2/b2 + a/b + 1) For k = logb n n = bk T(n) = akT(1) + cn(ak-1/bk a2/b2 + a/b + 1) = akc + cn(ak-1/bk a2/b2 + a/b + 1) = cak + cn(ak-1/bk a2/b2 + a/b + 1) = cnak /bk + cn(ak-1/bk a2/b2 + a/b + 1) = cn(ak/bk a2/b2 + a/b + 1) David Luebke /28/2019

25 So with k = logb n What if a = b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a = b? T(n) = cn(k + 1) = cn(logb n + 1) = (n log n) David Luebke /28/2019

26 So with k = logb n What if a < b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a < b? David Luebke /28/2019

27 So with k = logb n What if a < b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a < b? Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) David Luebke /28/2019

28 So with k = logb n What if a < b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a < b? Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) So: David Luebke /28/2019

29 So with k = logb n What if a < b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a < b? Recall that (xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1) So: T(n) = cn ·(1) = (n) David Luebke /28/2019

30 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? David Luebke /28/2019

31 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? David Luebke /28/2019

32 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? T(n) = cn · (ak / bk) David Luebke /28/2019

33 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? T(n) = cn · (ak / bk) = cn · (alog n / blog n) = cn · (alog n / n) David Luebke /28/2019

34 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? T(n) = cn · (ak / bk) = cn · (alog n / blog n) = cn · (alog n / n) recall logarithm fact: alog n = nlog a David Luebke /28/2019

35 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? T(n) = cn · (ak / bk) = cn · (alog n / blog n) = cn · (alog n / n) recall logarithm fact: alog n = nlog a = cn · (nlog a / n) = (cn · nlog a / n) David Luebke /28/2019

36 So with k = logb n What if a > b?
T(n) = cn(ak/bk a2/b2 + a/b + 1) What if a > b? T(n) = cn · (ak / bk) = cn · (alog n / blog n) = cn · (alog n / n) recall logarithm fact: alog n = nlog a = cn · (nlog a / n) = (cn · nlog a / n) = (nlog a ) David Luebke /28/2019

37 So… David Luebke /28/2019

38 The Master Theorem if T(n) = aT(n/b) + f(n) then
David Luebke /28/2019

39 Using The Master Method
T(n) = 9T(n/3) + n a=9, b=3, f(n) = n nlogb a = nlog3 9 = (n2) Since f(n) = O(nlog3 9 - ), where =1, case 1 applies: Thus the solution is T(n) = (n2) David Luebke /28/2019


Download ppt "Merge Sort Solving Recurrences The Master Theorem"

Similar presentations


Ads by Google