Download presentation
Presentation is loading. Please wait.
1
Lists and the Collections Framework
4/1/2017 Chapter 2 Lists and the Collections Framework
2
Chapter Objectives The List interface
Writing an array-based implementation of List Linked list data structures: Singly-linked Doubly-linked Circular Big-O notation and algorithm efficiency Implementing the List interface as a linked list The Iterator interface Implementing Iterator for a linked list Testing strategies The Java Collections framework (hierarchy)
3
Introduction A list Iterators
a collection of elements, each with a position or index Iterators facilitate sequential access to a list Classes ArrayList, Vector, and LinkedList subclasses of abstract class AbstractList implement the List interface
4
The List Interface and ArrayList Class
Section 2.1
5
Array, Java Array object
Array - an indexed structure Random access Sequential access Java Array object Fixed length Hard to change its length add an element remove an element
6
List Interface part of JAVA API java.util List operations:
Obtain an element at a specified position Replace an element at a specified position Find a specified target value Add an element at either end Remove an element from either end Insert or remove an element at any position Traverse the list structure without managing a subscript
7
java.util.List Interface and its Implementers
8
ArrayList Class Implement List interface
It cannot store primitive types Classes must store values as objects How to store primitive types?
9
ArrayList Class, … more An improvement over an array object
adding new elements to the end of a list access elements quickly in any order
10
Example List<String> myList = new ArrayList<String>();
Initial value - empty initial capacity -10 elements add elements to “myList”, myList.add("Bashful"); myList.add("Awful"); myList.add("Jumpy"); myList.add("Happy");
11
Add in between Adding an element with subscript 2:
myList.add(2, "Doc"); Notice that the subscripts of "Jumpy" and "Happy" have changed from [2],[3] to [3],[4]
12
Add at the end myList.add("Dopey");
13
Remove an element Removing an element:
myList.remove(1); The strings referenced by [2] to [5] have changed to [1] to [4]
14
Replace an element myList.set(2, "Sneezy");
15
Access an element myList[1]? OR String dwarf = myList.get(1);
16
Get index of an element myList.indexOf("Sneezy"); Returns?
myList.indexOf("Jumpy"); Returns?
17
List<String> myList = new ArrayList<String>();
Generic Collections The statement List<String> myList = new ArrayList<String>(); Generic collections or Generics “String” -- type parameter It sets the data type of all objects stored in a collection
18
Generic Collections: Primitive type example
General declaration CollectionClassName<E> variable = new CollectionClassName<E>(); “E” is a type parameter Adding a noncompatible type How about primitive types ? ArrayList<Integer> myList = new ArrayList<Integer>(); myList.add(new Integer(3)); // ok myList.add(3); // also ok! 3 is automatically wrapped in an Integer object myList.add(new String("Hello")); // error!
19
Why Use Generic Collections?
Flexible List<T> List<int>, or List<string>,… Enhance “type-checking” List v = new ArrayList(); v.add("test"); Integer i = (Integer)v.get(0); // Run time error List<String> v = new ArrayList<String>(); v.add("test"); Integer i = v.get(0); // (type error) Compile time error
20
ArrayList: Methods
21
Applications of ArrayList
Section 2.2
22
Application of ArrayList
ArrayList<Integer> someInts = new ArrayList<Integer>(); int[] nums = {5, 7, 2, 15}; for (int i = 0; i < nums.length; i++) { someInts.add(nums[i]); } // Display the sum int sum = 0; for (int i = 0; i < someInts.size(); i++) { sum += someInts.get(i); System.out.println("sum is " + sum);
23
nums[i] is an int; it is automatically wrapped in an Integer object
The Example ArrayList<Integer> someInts = new ArrayList<Integer>(); int[] nums = {5, 7, 2, 15}; for (int i = 0; i < nums.length; i++) { someInts.add(nums[i]); } // Display the sum int sum = 0; for (int i = 0; i < someInts.size(); i++) { sum += someInts.get(i); System.out.println("sum is " + sum); nums[i] is an int; it is automatically wrapped in an Integer object
24
Another Application:Phone Directory
public class DirectoryEntry { String name; String number; } Create a class for objects stored in the directory
25
Phone Directory Example
public class DirectoryEntry { String name; String number; } private ArrayList<DirectoryEntry> theDirectory = new ArrayList<DirectoryEntry>(); Create the directory
26
Add a DirectoryEntry object
Add an Entry Add a DirectoryEntry object public class DirectoryEntry { String name; String number; } private ArrayList<DirectoryEntry> theDirectory = new ArrayList<DirectoryEntry>(); theDirectory.add(new DirectoryEntry("Jane Smith", " "));
27
Search Phone Directory by “Name”
Method indexOf searches theDirectory by applying the equals method for class DirectoryEntry. Assume DirectoryEntry's equals method compares name fields. public class DirectoryEntry { String name; String number; } private ArrayList<DirectoryEntry> theDirectory = new ArrayList<DirectoryEntry>(); theDirectory.add(new DirectoryEntry("Jane Smith", " ")); int index = theDirectory.indexOf(new DirectoryEntry(aName, ""));
28
Access Phone Directory by “index”
public class DirectoryEntry { String name; String number; } private ArrayList<DirectoryEntry> theDirectory = new ArrayList<DirectoryEntry>(); theDirectory.add(new DirectoryEntry("Jane Smith", " ")); int index = theDirectory.indexOf(new DirectoryEntry(aName, "")); if (index != -1) dE = theDirectory.get(index); else dE = null;
29
Implementation of an ArrayList Class
Section 2.3
30
Fields: Capacity and Size
KWArrayList: Capacity: Physical size Size: Number of data items stroed
31
KWArrayList Fields import java.util.*; /** This class implements some of the methods of the Java ArrayList class */ public class KWArrayList<E> { // Data fields /** The default initial capacity */ private static final int INITIAL_CAPACITY = 10; /** The underlying data array */ private E[] theData; /** The current size */ private int size = 0; /** The current capacity */ private int capacity = 0; }
32
KWArrayList Constructor
public KWArrayList () { capacity = INITIAL_CAPACITY; theData = (E[]) new Object[capacity]; } This statement allocates storage for an array of type Object(superclass for all types) and then casts the array object to type E[] Although this may cause a compiler warning, it's ok
33
Implementing ArrayList.add(E)
Two add methods append at the end of the list insert an item at a specified position
34
Add at the end Check the size
insert the new item at the “size” position size=size++
35
Implementing Add in between ArrayList.add(int index,E anEntry)
Check size size = size + 1 Make room first Insert at “index” position
36
Implementing ArrayList.add(index,E)
public void add (int index, E anEntry) { // check bounds if (index < 0 || index > size) { throw new ArrayIndexOutOfBoundsException(index); } // Make sure there is room if (size >= capacity) { reallocate(); // shift data for (int i = size; i > index; i--) { theData[i] = theData[i-1]; // insert item theData[index] = anEntry; size++;
37
set and get Methods public E get (int index) {
if (index < 0 || index >= size) { throw new ArrayIndexOutOfBoundsException(index); } return theData[index]; public E set (int index, E newValue) { E oldValue = theData[index]; theData[index] = newValue; return oldValue;
38
remove Method: idea Check “index” Shift left size = size - 1
39
remove Method: the code
public E remove (int index) { if (index < 0 || index >= size) { throw new ArrayIndexOutOfBoundsException(index); } E returnValue = theData[index]; for (int i = index + 1; i < size; i++) { theData[i-1] = theData[i]; size--; return returnValue;
40
reallocate Method Create a new array with double size
Copy the contents of the new array private void reallocate () { capacity *= 2; theData = Arrays.copyOf(theData, capacity); }
41
reallocate Method: doubling
private void reallocate () { capacity *= 2; theData = Arrays.copyOf(theData, capacity); } The reason for doubling is to spread out the cost of copying; we discuss this further in the next section
42
KWArrayList as a Collection of Objects: old version
Earlier versions of Java did not support generics; all collections contained only Object elements To implement KWArrayList this way, remove the parameter type <E> from the class heading, replace each reference to data type E by Object The underlying data array becomes private Object[] theData;
43
Vector/ArrayList Class
Vector and ArrayList are similar ArrayList is more efficient Vector class is synchronized Support multiple threads access a Vector object without confliction
44
Algorithm Efficiency and Big-O
Section 2.4
45
Algorithm Efficiency/Big-O
the performance of an algorithm Hard to measure precisely Big-O notation is a choice Big-O notation Function of the size of a problem Used to compare the algorithms’ efficiency
46
Linear Growth Rate The processing time is proportional to the problem size the algorithm grows at a linear rate public static int search(int[] x, int target) { for(int i=0; i < x.length; i++) { if (x[i]==target) return i; } return -1; // target not found
47
Linear Growth Rate If the target is not present, the for loop will execute x.length times If the target is present the for loop will execute (on average) (x.length + 1)/2 times Therefore, the total execution time is directly proportional to x.length This is described as a growth rate of order n OR O(n) public static int search(int[] x, int target) { for(int i=0; i < x.length; i++) { if (x[i]==target) return i; } return -1; // target not found
48
n x m Growth Rate Processing time can be dependent on two different inputs public static boolean areDifferent(int[] x, int[] y) { for(int i=0; i < x.length; i++) { if (search(y, x[i]) != -1) return false; } return true;
49
n x m Growth Rate (cont.) The for loop will execute x.length times
But it will call search, which will execute y.length times The total execution time is proportional to (x.length * y.length) The growth rate has an order of n x m or O(n x m) public static boolean areDifferent(int[] x, int[] y) { for(int i=0; i < x.length; i++) { if (search(y, x[i]) != -1) return false; } return true;
50
Quadratic Growth Rate If n==m, thethe algorithm grows at a quadratic rate public static boolean areUnique(int[] x) { for(int i=0; i < x.length; i++) { for(int j=0; j < x.length; j++) { if (i != j && x[i] == x[j]) return false; } return true;
51
Quadratic Growth Rate (cont.)
The for loop with i as index will execute x.length times The for loop with j as index will execute x.length times The total number of times the inner loop will execute is (x.length)2 The growth rate has an order of n2 or O(n2) public static boolean areUnique(int[] x) { for(int i=0; i < x.length; i++) { for(int j=0; j < x.length; j++) { if (i != j && x[i] == x[j]) return false; } return true;
52
Big-O Notation order of magnitude Determined by the loops/nested loops
Examples a single loop is O(n) a pair of nested loops is O(n2) a nested pair of loops inside another is O(n3) and so on . . .
53
Logarithmic Growth Rate
Example for(i=1; i < x.length; i *= 2) { // Do something with x[i] } ‘i’ has the following values: , 2, 4, 8, 16, . . ., 2k The loop body will execute k-1 times O(log n) Logarithmic function grows slowly as the size n increases
54
Example of Big-O Consider the following program structure:
for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Simple Statement } Simple Statement 1 Simple Statement 2 Simple Statement 3 Simple Statement 4 Simple Statement 5 Simple Statement 6 Simple Statement 7 ... Simple Statement 30
55
Example of Big-O (Cont.)
Consider the following program structure: for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Simple Statement } Simple Statement 1 Simple Statement 2 Simple Statement 3 Simple Statement 4 Simple Statement 5 Simple Statement 6 Simple Statement 7 ... Simple Statement 30 This nested loop executes a Simple Statement n2 times
56
Example of Big-O (Cont.)
Consider the following program structure: for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Simple Statement } Simple Statement 1 Simple Statement 2 Simple Statement 3 Simple Statement 4 Simple Statement 5 Simple Statement 6 Simple Statement 7 ... Simple Statement 30 This loop executes 5 Simple Statements n times (5n)
57
Example of Big-O (cont.)
Consider the following program structure: for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Simple Statement } Simple Statement 1 Simple Statement 2 Simple Statement 3 Simple Statement 4 Simple Statement 5 Simple Statement 6 Simple Statement 7 ... Simple Statement 30 Finally, 25 Simple Statements are executed
58
Example of Big-O (cont.)
Consider the following program structure: for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { Simple Statement } Simple Statement 1 Simple Statement 2 Simple Statement 3 Simple Statement 4 Simple Statement 5 Simple Statement 6 Simple Statement 7 ... Simple Statement 30 We can conclude that the relationship between processing time and n (the number of date items processed) is: T(n) = n2 + 5n + 25
59
Big-O Boundary In terms of T(n), T(n) = O(f(n)) There exist
two constants, n0 and c, greater than zero, and a function, f(n), such that for all n > n0, cf(n) = T(n) ≤ cf(n) as n gets sufficiently large cf(n) is an upper bound on performance
60
Big-O boundary for the example
The growth rate of f(n) is determined by the highest order term O(n2 + 5n + 25) O(n2) ignore all constants and drop the lower-order terms
61
boundary for the Example
Given T(n) = n2 + 5n + 25, show that this is O(n2) Find constants n0 and c so that, for all n > n0, cn2 > n2 + 5n + 25 When n0 is 5, and c is 3, we have 3n2 > n2 + 5n for all n > 5
62
Graph representation
63
Big-O Example 2 Consider the following loop
for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { 3 simple statements } T(n) = 3(n – 1) + 3 (n – 2) + … + 3 Factoring out the 3, 3(n – 1 + n – 2 + n – 3 + … + 1) … + n – 1 = (n x (n-1))/2
64
Big-O Example 2 (cont.) Therefore T(n) = 1.5n2 – 1.5n
When n = 0, the polynomial has the value 0 For values of n > 1, 1.5n2 > 1.5n2 – 1.5n Therefore T(n) is O(n2) when n0 is 1 and c is 1.5
65
Big-O Example 2 (cont.)
66
Symbols Used in Quantifying Performance
67
Common Growth Rates
68
Different Growth Rates
69
Effects of Different Growth Rates
70
Exponential/Factorial Growth Rates
exponential and factorial growth rates are very sensitive to the size of the problem With an O(2n) algorithm 100 inputs will take 1 hour 101 inputs will take 2 hours 105 inputs will take 32 hours 114 inputs will take 16,384 hours (almost 2 years!)
71
Applications of Exponential/Factorial Growth Rates
4/1/2017 Applications of Exponential/Factorial Growth Rates Encryption algorithms take advantage of this Some cryptographic algorithms can be broken in O(2n) time, where n is the number of bits in the key If n==40 is considered breakable by a modern computer, but if n==100, would take a billion-billion (1018) times longer than n==40
72
Performance of KWArrayList
The set and get methods execute in constant time: O(1) Inserting or removing general elements is linear time: O(n) Adding at the end is (usually) constant time: O(1) With our reallocation technique the average is O(1) The worst case is O(n) because of reallocation
73
Single-Linked Lists Section 2.5
74
Single-Linked Lists Why need Linked List? (Add, Remove Performance)
ArrayList O(n) Linked List O(1)
75
A List Node A node can contain: a data item (E)
one or more links (next)
76
List Nodes for Single-Linked Lists
private static class Node<E> { private E data; private Node<E> next; /** Creates a new node with a null next dataItem The data stored */ private Node(E dataItem) { data = dataItem; next = null; } /** Creates a new node that references another nodeRef The node referenced by new node private Node(E dataItem, Node<E> nodeRef) { next = nodeRef;
77
List Nodes for Single-Linked Lists (cont.)
private static class Node<E> { private E data; private Node<E> next; /** Creates a new node with a null next dataItem The data stored */ private Node(E data) { data = dataItem; next = null; } /** Creates a new node that references another nodeRef The node referenced by new node private Node(E dataItem, Node<E> nodeRef) { next = nodeRef; The keyword static indicates that the Node<E> class will not reference its outer class Static inner classes are also called nested classes
78
List Nodes for Single-Linked Lists (cont.)
private static class Node<E> { private E data; private Node<E> next; /** Creates a new node with a null next dataItem The data stored */ private Node(E dataItem) { data = dataItem; next = null; } /** Creates a new node that references another nodeRef The node referenced by new node private Node(E dataItem, Node<E> nodeRef) { next = nodeRef; Generally, all details of the Node class should be private. This applies also to the data fields and constructors.
79
Creating and Connecting Nodes
Node<String> tom = new Node<String>("Tom"); Node<String> dick = new Node<String>("Dick"); Node<String> harry = new Node<String>("Harry"); Node<String> sam = new Node<String>("Sam"); tom.next = dick; dick.next = harry; harry.next = sam;
80
Example of Connecting Nodes
81
A Single-Linked List Class
Not a single node Linked nodes How to link the nodes? A SingleLinkedList a data field head Let head point to the first node public class SingleLinkedList<E> { private Node<E> head = null; private int size = 0; ... }
82
SLList: An Example List
head = SLList<String> next = data = "Tom" Node<String> next = data = "Dick" Node<String>
83
Implementing idea:SLList.addFirst(E item)
head = SLList<String> next = data = "Tom" Node<String> next = data = "Dick" Node<String> next = data = "Ann" Node<String> The element added to the list
84
Code SLList.addFirst(E item)
private void addFirst (E item) { Node<E> temp = new Node<E>(item, head); head = temp; size++; } or, more simply ... head = new Node<E>(item, head); This works even if head is null
85
Implementing Idea addAfter(Node<E> node, E item)
head = SLList<String> next = data = "Tom" Node<String> next = data = "Dick" Node<String> next = data = "Ann" Node<String> The element added to the list
86
Implementing Code: addAfter(Node<E> node, E item)
private void addAfter (Node<E> node, E item) { Node<E> temp = new Node<E>(item, node.next); node.next = temp; size++; } or, more simply ... node.next = new Node<E>(item, node.next); We declare this method private since it should not be called from outside the class. Later we will see how this method is used to implement the public add methods.
87
Implementing Idea removeAfter(Node<E> node)
temp head = SLList<String> next = data = "Tom" Node<String> next = data = "Dick" Node<String> next = data = "Ann" Node<String> The Node parameter
88
Implementing Code: removeAfter(Node<E> node)
private E removeAfter (Node<E> node) { Node<E> temp = node.next; if (temp != null) { node.next = temp.next; size--; return temp.data; } else { return null; }
89
Implementing Idea: SLList.removeFirst()
head = SLList<String> next = data = "Dick" Node<String> next = data = "Tom" Node<String> temp
90
Implementing Code: SLList.removeFirst()
private E removeFirst () { Node<E> temp = head; if (head != null) { head = head.next; } if (temp != null) { size--; return temp.data } else { return null;
91
Single-Linked List Traversing Idea
head = SLList<String> next = data = "Tom" Node<String> next = data = "Dick" Node<String> Do something with nodeRef Do something with nodeRef Do something with nodeRef next = data = "Ann" null Node<String> nodeRef
92
Single-Linked List Traversing Code
toString()can be implemented with a traversal: public String toString() { Node<String> nodeRef = head; StringBuilder result = new StringBuilder(); while (nodeRef != null) { result.append(nodeRef.data); if (nodeRef.next != null) { result.append(" ==> "); } nodeRef = nodeRef.next; return result.toString();
93
SLList.getNode(int) private Node<E> getNode(int index) {
Node<E> node = head; for (int i=0; i<index && node != null; i++) { node = node.next; } return node;
94
SingleLinkedList Class More Methods
95
public E get(int index)
if (index < 0 || index >= size) { throw new IndexOutOfBoundsException(Integer.toString(index)); } Node<E> node = getNode(index); return node.data;
96
public E set(int index, E newValue)
public E set (int index, E anEntry) { if (index < 0 || index >= size) { throw new IndexOutOfBoundsException(Integer.toString(index)); } Node<E> node = getNode(index); E result = node.data; node.data = anEntry; return result;
97
public void add(int index, E item)
public void add (int index, E item) { if (index < 0 || index > size) { throw new IndexOutOfBoundsException(Integer.toString(index)); } if (index == 0) { addFirst(item); } else { Node<E> node = getNode(index-1); addAfter(node, item);
98
public boolean add(E item)
To add an item to the end of the list public boolean add (E item) { add(size, item); return true; }
99
Double-Linked Lists and Circular Lists
Section 2.6
100
Limitations of Single-Linked Lists
Insertion front is O(1) other positions is O(n) Removing requires a reference to the previous node Traversing Only in one direction What is the solution ?
101
Double-Linked Lists Example
102
Node Class Definition private static class Node<E> { private E data; private Node<E> next = null; private Node<E> prev = null; private Node(E dataItem) { data = dataItem; }
103
Inserting into a Double-Linked List
sam from predecessor next = = prev data = "Harry" Node next = null = prev data = "Sam" Node to predecessor Node<E> sharon = new Node<E>("Sharon"); sharon.next = sam; sharon.prev = sam.prev; sam.prev.next = sharon; sam.prev = sharon sharon next = = prev data = "Sharon" Node
104
Removing from a Double-Linked List
harry next = = prev data = "Dick" Node next = = prev data = "Sharon" Node next = = prev data = "Harry" Node harry.prev.next = harry.next harry.next.prev = harry.prev
105
A Double-Linked List Class
Data fields: head (a reference to the first list Node) tail (a reference to the last list Node) size Good news Insertion at either end is O(1); Bad news insertion elsewhere is still O(n) or O(n/2)
106
Circular Lists Double-linked circular list:
Link last node to the first node, and Link first node to the last node Single-linked circular lists: Traverse in forward direction only Advantages: Circular Traverse from node Disadvantage: Infinite loop!
107
Circular Lists Example
108
The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces
Section 2.7
109
The LinkedList Class: Methods
110
The Iterator Moving place marker Starts from the first node
keeps track of the current position in a linked list Starts from the first node Move the Iterator next method An Iterator traversing performance O(n) vs. O(n2) (?) with get() of a list
111
Iterator Interface Defined in java.util
‘Iterator’ Method is Declared in the List interface
112
Iterator idea Conceptually between elements
Not refer to any particular object
113
Using Iterator Traverse a List<Integer>
Iterator<Integer> iter = aList.iterator(); while (iter.hasNext()) { int value = iter.next(); // Do something with value ... }
114
Remove Elements with Iterator
Use Iterator remove() remove() deletes the most recent element returned next()must be called before each remove(); OtherwiseIllegalStateException LinkedList.remove vs. Iterator.remove: LinkedList.remove O(n2) (?) Iterator.remove O(n)
115
‘Remove’ Example remove certain elements
public static void removeDivisibleBy(LinkedList<Integer> aList, int div) { Iterator<Integer> iter = aList.iterator(); while (iter.hasNext()) { int nextInt = iter.next(); if (nextInt % div == 0) { iter.remove(); }
116
Iterator Limitations Iterator limitations One direction ‘Traverse’
No add method Hard to start from a certain position of a list Solution Using ListIterator
117
ListIterator Interface
Conceptually positioned between elements of the list Positions are indexed from 0 to size
118
ListIterator Interface: Methods
119
ListIterator Interface (cont.)
120
Iterator vs. ListIterator
sub-interface of Iterator Iterator/ListIterator fewer methods/more general data structures/list only
121
ListIterator and an Index
nextIndex()returns the index of item to be returned by next() previousIndex() returns the index of item to be returned by previous() listIterator(int index) Returns a ListIterator positioned before index term
122
Cont. The listIterator (int index)
creates a new ListIterator with O(n) operation
123
Enhanced for Statement
Supported from Java 5.0 The enhanced for statement creates an Iterator object implicitly calls its hasNext and next methods Other methods, such as “remove”, not available
124
Enhanced for Example-1 Apply to a linked list count = 0;
for (String nextStr : myList) { if (target.equals(nextStr)) { count++; }
125
Enhanced for Example-2 Apply to a linked list sum = 0;
for (int nextInt : myList) { sum += nextInt; }
126
Enhanced for Example-3 Apply to Array } for (char nextCh : chars) {
System.out.println(nextCh); }
127
Iterable Interface Iterable Collection List
Iterator() declared in Iterable interface public interface Iterable<E> { /** returns an iterator over the elements in this collection. */ Iterator<E> iterator(); }
128
Implementation of a Double-Linked List Class
Section 2.8 (Optional)
129
KWLinkedList We will define a KWLinkedList class which implements some of the methods of the List interface The KWLinkedList class is for demonstration purposes only; Java provides a standard LinkedList class in java.util which you should use in your programs
130
KWLinkedList (cont.) import java.util.*; /** Class KWLinkedList implements a double linked list and * a ListIterator. */ public class KWLinkedList <E> { // Data Fields private Node <E> head = null; private Node <E> tail = null; private int size = 0; . . .
131
Add Method Obtain a reference, nodeRef, to the node at position index Insert a new Node containing obj before the node referenced by nodeRef To use a ListIterator object to implement add: Obtain an iterator that is positioned just before the Node at position index Insert a new Node containing obj before the Node currently referenced by this iterator /** Add an item at the specified index The index at which the object is to be obj The object to be IndexOutOfBoundsException if the index is out of range (i < 0 || i > size()) */ public void add(int index, E obj) { listIterator(index).add(obj); } It is not necessary to declare a local ListIterator; the method call listIterator returns an anonymous listIterator object
132
Get Method Obtain a reference, nodeRef, to the node at position index
Return the contents of the Node referenced by nodeRef /** Get the element at position index Position of item to be The item at index */ public E get(int index) { return listIterator(index).next(); }
133
Other Add and Get Methods
public void addFirst(E item) { add(0, item); } public void addLast(E item) { add(size, item); public E getFirst() { return head.data; public E getLast() { return tail.data;
134
Implementing the ListIterator Interface
KWListIter is an inner class of KWLinkedList which implements the ListIterator interface
135
Implementing the ListIterator Interface (cont.)
136
Implementing the ListIterator Interface (cont.)
private class KWListIter implements ListIterator<E> { private Node <E> nextItem; private Node <E> lastItemReturned; private int index = 0; ...
137
Constructor public KWListIter(int i) { // Validate i parameter. if (i < 0 || i > size) { throw new IndexOutOfBoundsException("Invalid index " + i); } lastItemReturned = null; // No item returned yet. // Special case of last item if (i == size) { index = size; nextItem = null; else { // Start at the beginning nextItem = head; for (index = 0; index < i; index++) { nextItem = nextItem.next;
138
The hasNext()Method tests to see if nextItem is null
public boolean hasnext() { return nextItem != null; }
139
Advancing the Iterator
KWLinkedList head tail size 3 next prev null data "Tom" Node next prev Node next prev data "Sam" Node data "Harry" KWListIter nextItem lastItemReturned index 1 public E next() { if (!hasNext()) { throw new NoSuchElementException(); } lastItemReturned = nextItem; nextItem = nextItem.next; index++; return lastItemReturned.data; 2
140
Previous Methods public boolean hasPrevious() { return (nextItem == null && size != 0) || nextItem.prev != null; } public E previous() { if (!hasPrevious()) { throw new NoSuchElementException(); if (nextItem == null) { // Iterator past the last element nextItem = tail; else { nextItem = nextItem.prev; lastItemReturned = nextItem; index--; return lastItemReturned.data;
141
The Add Method When adding, there are four cases to address:
Add to an empty list Add to the head of the list Add to the tail of the list Add to the middle of the list
142
Adding to an Empty List (after insertion) if (head == null) {
head = new Node<E>(obj); tail = head; } ... size++
143
Adding to the Head of the List
KWListIter nextItem = lastItemReturned = null index = 0 1 Node next = null = prev data = "Tom" Node Node next = null = prev data = "Sam" next = = prev data = "Harry" KWLinkedList head = null tail = null size = 3 4 if (nextItem == head) { Node<E> newNode = new Node<E>(obj); newNode.next = nextItem; nextItem.prev = newNode; head = newNode; } ... size++; index++; next = null null = prev data = "Ann" Node newNode
144
Adding to the Tail of the List
KWListIter nextItem = null lastItemReturned = null index = 2 Node next = prev = null data = "Tom" Node Node next = null = prev data = "Sam" 3 next = = prev data = "Ann" KWLinkedList head = null tail = null size = 3 4 if (nextItem == null) { Node<E> newNode = new Node<E>(obj); tail.next = newNode; newNode.prev = tail; tail = newNode } ... size++; index++; next = null null = prev data = "Bob" Node newNode
145
Adding to the Middle of the List
KWListIter nextItem = null lastItemReturned = null index = 1 Node next = prev = null data = "Tom" Node Node next = null = prev data = "Sam" 2 next = = prev data = "Ann" KWLinkedList head = null tail = null size = 3 4 next = null null = prev data = "Bob" Node newNode else { Node<E> newNode = new Node<E>(obj); newNode.prev = nextItem.prev; nextItem.prev.next = newNode; newNode.next = nextItem; nextItem.prev = newNode; } ... size++; index++;
146
Inner Classes: Static and Nonstatic
KWLinkedList contains two inner classes: Node<E> is declared static: there is no need for it to access the data fields of its parent class, KWLinkedList KWListIter cannot be declared static because its methods access and modify data fields of KWLinkedList’s parent object which created it An inner class which is not static contains an implicit reference to its parent object and can reference the fields of its parent object Since its parent class is already defined with the parament <E>, KWListIter cannot be declared as KWListIter<E>; if it were, an incompatible types syntax error would occur
147
The Collections Framework Design
Section 2.9
148
The Collection Interface
excluding add(int, E) get(int) remove(int) set(int, E) but including add(E) remove(Object) the iterator method
149
The Collection Framework
<<interface>> Iterable< <<interface>> Collection <<interface>> Queue< <<interface>> List< AbstractCollection <<interface>> Set <<interface>> Deque AbstractList AbstractSet <<interface>> SortedSet AbstractSequentialList Vector ArrayList HashSet <<interface>> NavigableSet< LinkedHashSet TreeSet LinkedList Stack ConcurrentSkipListSet
150
Common Features of Collections
grow as needed hold references to objects at least two constructors one to create an empty collection one to make a copy of another collection
151
Common Methods of Collections
general Collection the order of elements is not specified Collections implementing the List interface the order of the elements is determined by the index
152
Common Features of Collections
For a general Collection the position where an object is inserted is not specified But for ArrayList and LinkedList add(E) always inserts at the end and always returns true
153
AbstractCollection, AbstractList, and AbstractSequentialList
"helper" abstract classes help to build implementations of their corresponding interfaces Providing implementations for interface methods not used the helper classes require the programmer to extend the AbstractCollection class and implement only the desired methods
154
Implementing Collection<E> interface
Extend AbstractCollection<E>, which implements most operations You need to implement only: add(E) size() iterator() an inner class that implements Iterator<E>
155
Implementing a List<E> interface
Extend AbstractList<E> You need to implement only: add(int, E) get(int) remove(int) set(int, E) size() AbstractList implements Iterator<E> using the index
156
AbstractCollection, AbstractList, and AbstractSequentialList
Another more complete way to declare KWArrayList is: public class KWArrayList<E> extends AbstractList<E> implements List<E> Another more complete, way to declare KWLinkedLinkedList is: public class KWLinkedList<E> extends AbstractSequentialList<E> implements List<E>
157
List and RandomAccess Interfaces
Accessing a LinkedList using an index O(n) traversal of the list until the index is located The RandomAccess interface Marker interface, no methods An algorithm design Index list--OK If not, --- Optimize it
158
Application of the LinkedList Class
Section 2.10
159
An Application: Ordered Lists
Task: Maintain a list of names in alphabetical order Approach Develop an OrderedList class Implement a Comparable interface by providing a compareTo(E) method Use a LinkedList class as a component of the OrderedList if OrderedList extended LinkedList, the user could use LinkedList's add methods to add an element out of order
160
Class Diagram for OrderedList
161
Design
162
Inserting into an OrderedList
Strategy for inserting new element e: Find first item > e Insert e before that item Refined with an iterator: Create ListIterator that starts at the beginning of the list While the ListIterator is not at the end of the list and e >= the next item Advance the ListIterator Insert e before the current ListIterator position
163
Inserting Diagrammed
164
Inserting Diagrammed (cont.)
165
OrderedList.add public void add (E e) { ListIterator<E> iter = theList.listIterator(); while (iter.hasNext()) { if (e.compareTo(iter.next()) < 0) { // found element > new one iter.previous(); // back up by one iter.add(e); // add new one return; // done } iter.add(e); // will add at end
166
Using Delegation to Implement the Other Methods
public E get (int index) { return theList.get(index); } public int size () { return theList.size(); public E remove (E e) { return theList.remove(e); // returns an iterator positioned before the first element public Iterator iterator() { return theList.iterator();
167
Testing Section 2.11 (on yourself)
168
Testing Testing runs a program or part of a program under controlled conditions to verify that results are as expected Testing detects program defects after the program compiles (all syntax error have been removed) While extremely useful, testing cannot detect the absence of all defects in complex programs
169
Testing Levels Unit testing: tests the smallest testable piece of the software, often a class or a sufficiently complex method Integration testing: tests integration among units System testing: tests the whole program in the context in which it will be used Acceptance testing: system testing designed to show that a program meets its functional requirements
170
Types of Testing Black-box testing:
tests the item (method, class, or program) based on its interfaces and functional requirements is also called closed-box or functional testing is accomplished by varying input parameters across the allowed range and outside the allowed range, and comparing with independently calculated results
171
Types of Testing (cont.)
White-box testing: tests the item (method, class, or program) with knowledge of its internal structure is also called glass-box, open-box, or coverage testing exercises as many paths through the element as possible provides appropriate coverage statement – ensures each statement is executed at least once branch – ensures each choice of branch (if , switch, loops) is taken path – tests each path through a method
172
Preparations for Testing
A test plan should be developed early in the design stage—the earlier an error is detected, the easier and less expensive it is to correct it Aspects of test plans include deciding: how the software will be tested when the tests will occur who will do the testing what test data will be used
173
Testing Tips for Program Systems
Carefully document method operation, parameter, and class attributes using comments; follow Javadoc conventions Leave a trace of execution by displaying the method name as you enter it Display values of all input parameters upon entering a method and values of any class attributes accessed by the method Display values of all method outputs after returning from a method, together with any class attributes that are modified by a method
174
Testing Tips for Program Systems (cont.)
An efficient way to display values of parameters, return values, and class attributes: private static final boolean TESTING = true; // or false to // disable if (TESTING) { // Code for output statements } Remove these features when you are satisfied with the testing results You can define different boolean flags for different tests
175
Developing the Test Data
In black-box testing, test data should check for all expected inputs as well as unanticipated data In white-box testing, test data should be designed to ensure all combinations of paths through the code are executed
176
Testing Boundary Conditions
Example for (int i = 0; i < x.length; i++) { if (x[i] == target) return i; } Test the boundary conditions (for white-box and black- box testing) when target is: first element (x[0] == target is true) last element (x[length-1] == target is true) not in array (x[i] == target is always false) present multiple times (x[i] == target for more than one value of i)
177
Testing Boundary Conditions (cont.)
for (int i = 0; i < x.length; i++) { if (x[i] == target) return i; } Test for the typical situation when target is: somewhere in the middle and for the boundary conditions when the array has only one element no elements
178
Testing Boundary Conditions (cont.)
public static void main(String[] args) { int[] x = {5, 12, 15, 4, 8, 12, 7}; // Array to search. // Test for target as first element. verify(x, 5, 0); // Test for target as last element. verify(x, 7, 6); // Test for target not in array. verify(x, -5, -1); // Test for multiple occurrences of target. verify(x, 12, 1); // Test for target somewhere in middle. verify(x, 4, 3); // Test for 1-element array. x = new int[1]; x[0] = 10; verify(x, 10, 0); verify(x, -10, -1); // Test for an empty array. x = new int[0]; verify(x, 10, -1); }
179
Testing Boundary Conditions (cont.)
private static void verify(int[] x, int target, int expected) { int actual = search(x, target); System.out.print("search(x, " + target + ") is " + actual + ", expected " + expected); if (actual == expected) System.out.println(": Pass"); else System.out.println(": ****Fail"); }
180
Testing Boundary Conditions (cont.)
181
Stubs Stubs are method placeholders for methods called by other classes, but not yet implemented Stubs allowing testing as classes are being developed A sample stub: public void save() { System.out.println("Stub for save has been called"); modified = false; }
182
Stubs (cont.) Stubs can print out value of inputs
assign predictable values to outputs change the state of variables
183
Preconditions and Postconditions
A precondition is a statement of any assumptions or constraints on the input parameters before a method begins execution A postcondition describes the result of executing the method, including any change to the object’s state A method's preconditions and postconditions serve as a contract between a method caller and the method programmer /** Method Save pre: the initial directory contents are read from a data file post: writes the directory contents back to a data file */ public void save() { . . . }
184
Drivers Another testing tool A driver program
declares any necessary object instances and variables assigns values to any of the method's inputs (specified by the preconditions) calls the method displays the outputs returned by the method Driver program code can be added to a class's main method (each class can have a main method; only one main method - the one you designate to execute - will run)
185
Finally JUnit, a popular program for Java projects, helps you develop testing programs (see Appendix C) Many IDEs are shipped with debugger programs you can use for testing
186
Testing OrderedList To test an OrderedList,
store a collection of randomly generated integers in an OrderedList test insertion at beginning of list: insert a negative integer test insertion at end of list: insert an integer larger than any integer in the list create an iterator and iterate through the list, displaying an error if any element is smaller than the previous element remove the first element, the last element, and a middle element, then traverse to show that order is maintained
187
Testing OrderedList (cont.)
Class TestOrderedList import java.util.*; public class TestOrderedList { /** Traverses ordered list and displays each element. Displays an error message if an element is out of order. @param testList An ordered list of integers */ public static void traverseAndShow(OrderedList<Integer> testList) { int prevItem = testList.get(0); // Traverse ordered list and display any value that // is out of order. for (int thisItem : testList) { System.out.println(thisItem); if (prevItem > thisItem) System.out.println("*** FAILED, value is " + thisItem); prevItem = thisItem; } public static void main(String[] args) { OrderedList<Integer> testList = new OrderedList<Integer>(); final int MAX_INT = 500; final int START_SIZE = 100; (cont. on next slide)
188
Testing OrderedList (cont.)
// Create a random number generator. Random random = new Random(); for (int i = 0; i < START_SIZE; i++) { int anInteger = random.nextInt(MAX_INT); testList.add(anInteger); } // Add to beginning and end of list. testList.add(-1); testList.add(MAX_INT + 1); traverseAndShow(testList); // Traverse and display. // Remove first, last, and middle elements. Integer first = testList.get(0); Integer last = testList.get(testList.size() - 1); Integer middle = testList.get(testList.size() / 2); testList.remove(first); testList.remove(last); testList.remove(middle);
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.