Presentation is loading. Please wait.

Presentation is loading. Please wait.

Http://i.usatoday.net/tech/graphics/iss_timeline/flash.htm.

Similar presentations


Presentation on theme: "Http://i.usatoday.net/tech/graphics/iss_timeline/flash.htm."— Presentation transcript:

1

2

3 Oxidation-Reduction Reactions
Electrochemistry: Oxidation-Reduction Reactions gaining to 2e- Zn(s) + Cu+2 (aq)  Zn2+(aq) + Cu(s) loss of 2e- Copper is reduced because it goes down in charge Zinc is oxidized - it goes up in charge

4 Messing with electrons
Electrochemistry Messing with electrons What is the charge on each atom +1 +7 -8 +3 -2 = 1 +3 -3 +1 +7 -2 +3 -2 +1 +3 -1 KMnO Cr(OH) Fe(OH)2+1

5 Zn(s) + 2H+(aq)  Zn2+(aq) + H2(aq)
Electrochemistry: Oxidation-Reduction Reactions By writing the oxidation number of each element under the reaction equation, we can easily see the oxidation state changes that occur Zn(s) + 2H+(aq)  Zn2+(aq) + H2(aq) In any oxidation-reduction reaction (redox), both oxidation and reduction must occur.

6 Balancing Oxidation-Reduction Reactions
Electrochemistry: Balancing Oxidation-Reduction Reactions Oxidation Number Method -3e’s X 4 = -12 Al(l) + MnO2  Al2O3 + Mn 4 3 2 3 +4e’s X 3 = +12

7 Balancing Oxidation-Reduction Reactions
Electrochemistry: Balancing Oxidation-Reduction Reactions Sample problem: +2 +4 -2e’s X 5 = -10 I2O5(s) + CO(g)  I2(s) + CO2(g) 5 5 +5e’s X 2 = 10 +5

8 MnO4-(aq) + C2O42-(aq)  Mn2+(aq) + CO2(g) (acid)
Half-Reaction Method : MnO4-(aq) + C2O42-(aq)  Mn2+(aq) + CO2(g) (acid)

9 Half-Reaction Method (in acid)
: MnO4-(aq) + C2O42-(aq)  Mn2+(aq) + CO2(g) Step 1: Divide into two half-reactions, MnO4-  Mn2+ C2O42-  CO2 Step 2: Balance main element MnO4-  Mn2+ C2O42-  2CO2

10 MnO4-  Mn2+ + 4H2O C2O42-  2CO2 MnO4-  Mn2+ + 4H2O 8H+ +
Step 3: Balance the O atoms by adding H2O : : MnO4-  Mn2+ + 4H2O C2O42-  2CO2 Step 4: Balance the H atoms by adding H+ 8H+ + MnO4-  Mn2+ + 4H2O C2O42-  2CO2 Step 5: Balance charge with electrons +7 +2 5e- + 8H++ MnO4-  Mn2+ + 4H2O -2 C2O42-  2CO2 + 2e-

11 5e- + 8H++ MnO4-  Mn2+ + 4H2O C2O42-  2CO2 + 2e-
Step 6: Make the electrons balance : 5e- + 8H++ MnO4-  Mn2+ + 4H2O C2O42-  2CO2 + 2e- Step 7: Cancel and add 10e H++ 2MnO4-  2Mn2+ + 8H2O + 5C2O42-  10CO2 +10e- 16H+ + 2MnO4- + 5C2O42-  2Mn CO2 + 8H2O

12 CN- + MnO4-  CNO- + MnO2 -1 +1 H2O + CN-  CNO- + 2H+ + 2e- 3e-+
Balancing in base CN- + MnO4-  CNO- + MnO2 -1 +1 3 3 6 3 6 H2O + CN-  CNO- + 2H+ + 2e- 6 2 8 2 4 3e-+ 4H+ + MnO4-  MnO2 + 2H2O +3 2H+ + 3CN- + 2MnO4-  3CNO- + 2MnO2 + H2O + 2OH- 2OH- 2H2O 1

13 Cr(OH)3 + ClO  CrO4-2 + Cl2 Have at it Balancing in base
4Cr(OH)3 + 6ClO + 8OH- 4CrO Cl2 + 10H2O

14 metals ordered from the highest to lowest
Note that the activity series is simply the oxidation half-reactions of the metals ordered from the highest to lowest

15 Using the hydrogen electrode as a reference
2H+ (1 M) + 2e-  H2 (1 atm, 25 °C) E°red = 0 V

16 Zn(s) + Cu2+(aq)  Zn2+(aq) + Cu(s)
Cell EMF or Voltage From the table: Zn+2 + 2e-  Zn red= -.76V Flip Cu+2 + 2e-  Cu red= .34V Zn  Zn+2 + 2e- ox = .76V Zn(s) + Cu2+(aq)  Zn2+(aq) + Cu(s) E°cell = 1.10 V E ° ox + E ° red = E°cell

17 Voltaic or Galvanic Cells
- oxidation + reduction I love M dawg Voltaic or Galvanic Cells

18 Sample Problem. Draw a voltaic cell
using the following equation and label all parts include line notation. Cr2O72-(aq) + I-(aq)  Cr3+(aq) + I2(s)

19

20 Spontaneity and Extent of Redox Reactions
A positive emf indicates a spontaneous process, and a negative emf indicates a nonspontaneous one. Sample Problem: Using the standard electrode potentials, determine whether the following reaction are spontaneous A. Cu(s) + 2H+(aq)  Cu2+(aq) + H2(g) Cu(s)  Cu2+(aq) + 2e Eox = -.34V 2H+(aq) + 2e-  H2(g) Ered = 0.0V Ecell = -.34V B. Cl2(g) + 2I-(aq)  2Cl-(aq) + I2(s) Cl2(g) + 2e-  2Cl-(aq) Ered = 1.36V 2I-(aq)  2e- + I2(s) Eox = -.54V Ecell = .82V

21 EMF and Free Energy Change
Any redox reaction involves free energy change (G) which also may be used as a measure of spontaneity or work (max or min.) G° = -nE ° n = # of moles of e-s transferred  = C the charge of one mole of e-s or 96,500 J/V-mol e- Note that because n and  are both positive values, a positive value in E leads to a negative value of G.

22 Use the standard electrode potentials to
calculate the standard free energy change, G°, for the following reaction 2Br-(aq) + F2(g) Br2(l) + 2F-(aq) 2Br-(aq)  Br2(l) + 2e E°ox = -1.06 F2(g) + 2e-  2F-(aq) E°red = 2.87 2Br-(aq) + F2(g) Br2(l) + 2F-(aq) E°cell = 1.81 V G = -nE G = -(2 mol e- )(96,500 J/volt-mol e-)( 1.81 V) G° = x 105 J = -349 kJ

23 EMF and Equilibrium Constant
“Remember in Chapter 19, we related G° to the equilibrium constant, K?” G° = -RT lnK G ° = -nE ° -nE° = -RT lnK Simplify E ° = logK n

24 Calculate the K for the following reaction
O2 (g) + 4H+ (aq) + 4Fe2+ (aq)  4Fe3+ (aq) + 2H2O (l) O2 (g) + 4H+ (aq) + 4e-  2H2O (l) E°red = 1.23 V 4Fe2+ (aq)  4Fe3+ (aq) + 4e E°ox = V O2 (g) + 4H+ (aq) + 4Fe2+ (aq)  4Fe3+ (aq) + 2H2O (l) E°cell = 0.46 V n E ° log K = 4(0.46V) = = 31.1 0.0591V 0.0591V K = x 1031

25  = .0591 log k n .86V = .0591 log k 10 Log K = 145.5 K = 10145.5
Calculate the equilibrium constant for the reaction IO3- (aq) + 5Cu (s) + 12H+ (aq) I2 (s) + 5Cu2+ (aq) + 6H2O (l) 2IO3- (aq) + 12H+ (aq) + 10e-  I2 (s) + 6H2O (l) red= 1.20V 5Cu (s)  5Cu2+ (aq) + 10e ox= -.34V  = log k n cell= .86V .86V = log k 10 Log K = 145.5 K =

26 Lead Storage Battery anode: Pb (s) + SO42- (aq)  PbSO4 (s) + 2e E °= V cathode:PbO2(s)+ SO42-(aq)+ H+(aq)+ 2e-  PbSO4(s)+ 2H2O(l) E °= V Pb(s)+ PbO2(s)+ 4H+ +2SO4(aq) 2PbSO4(s)+ 2H2O(l) E °= V Note that one advantage of the lead storage battery is that it can be recharged because the PbSO4 produced during discharge adheres to the electrodes

27 Dry Cell alkaline anode: Zn (s)  Zn 2+ (aq) + 2e-
cathode:2NH4+(aq)+2MnO2(s)+ 2e  Mn2O3(s) + 2NH3(aq) + H2O (l)

28 Fuel Cells anode: 2H2(g)+ 4OH-(aq) 4H2O(l) + 4e-
cathode: 4e- + O2(g) + H2O(l)  4OH-(aq) 2H2(g) + O2(g)  2H2O(l)

29 Electrolytic Cells: Electrolysis
Notice  voltage source acts like an electron pump (- red) (+ ox.) Eº = ( -) These electrodes are inert Electrolysis is driven by an outside energy source

30 2H2O + 2e-  H2 + 2OH- E°red = -0.83 Na+ + e-  Na(s) E°red = -2.71
Electrolysis of Aqueous Solutions Sodium cannot be prepared by electrolysis of aqueous solutions of NaCl, because water is more easily reduced than Na+: Possible Cathode reactions (Note: Not in table on AP exam) 2H2O + 2e-  H2 + 2OH- E°red = -0.83 Na+ + e-  Na(s) E°red = -2.71 The possible Anode reactions are: 2Cl-  Cl E°ox = -1.36 2H2O  4H+ + O2 + 4e E°ox = -1.23 Therefore 2Cl-(aq)  Cl2(g) E°ox = 2H2O + 2e-  H2 + 2OH- E°red = E°cell >

31 Electrolysis of With Active Electrodes
Possibilities Ni(s)  Ni2+(aq) + 2e E°ox = 0.28 2H2O  4H+ + O2 + 4e- E°ox = -1.23 Ni(s)  Ni2+(aq) + 2e- anode: cathode: Ni2+(aq) + 2e-  Ni(s) Electroplating creates a silver lining

32 = 3.36 g of Al Quantitative Aspects of Electrolysis
Calculate the mass of aluminum produced in 1.00 hr. by the electrolysis of molten AlCl3 if the current is 10.0 A. (C = amperes x seconds) (10.0A) (1.00 hr) (3600 sec) (1C) (1) (1molAl) (27.0 g Al) (1 hr) (1 A-s) (96,500C) (3) (1 mol Al) = 3.36 g of Al

33 30.2g Mg Quantitative Aspects of Electrolysis
The half-reaction for the formation of magnesium metal upon electrolysis of molten MgCl2 is Mg2+ + 2e-  Mg. Calculate the mass of magnesium formed upon passage of 60.0 A for a period of 4000 s (60.0A)(4000s)(1C)(1) (mole Mg)(24.3g) (A•s)(96,500C) (2) (mole Mg) 30.2g Mg

34 Electrical Work since G= wmax and G = - nE then wmax= - nE
The unit employed by electric utilities is kilowatt-hour (kWh =3.6 x 106J)

35 Corrosion reactions are redox reactions in which a metal is attacked by some substance in its environment and converted to an unwanted compound. All metals except gold and platinum are thermodynamically capable of undergoing oxidation in air at room temperature

36 The rusting of iron is known to require oxygen; iron does not rust in water unless O2
is present. E°red = 1.23 V E°red = 0.44 V Note that as the pH increases, the reduction of O2 becomes less favorable

37 The corrosion of Iron:Protecting the surface with tin
Tin has lower E°ox so less likely to oxidize until the surface is broken then it accelerates as it makes a voltaic cell with iron. Fe(s)  Fe2+ + 2e- E°ox = 0.44 V Sn(s)  Sn2+ + 2e- E°ox = 0.14 V

38 Galvanization The corrosion of Iron:Cathodic Protection
Fe(s)  Fe2+(aq) + 2e- E°ox = 0.44 V Zn(s)  Zn2+(aq) + 2e- E°ox = 0.76V Zinc is more positive and goes first and has an oxide coat that seals. sacrificial anode Galvanization

39 The corrosion of Iron:Cathodic Protection


Download ppt "Http://i.usatoday.net/tech/graphics/iss_timeline/flash.htm."

Similar presentations


Ads by Google