Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modeling Electromagnetic Fields

Similar presentations


Presentation on theme: "Modeling Electromagnetic Fields"β€” Presentation transcript:

1 Modeling Electromagnetic Fields
An Application in MRI Kirsten Koolstra April 22nd, 2015

2 Introduction Magnetic Resonance Imaging (MRI)

3 Introduction RF Interference in MRI πœ†βˆ 1 𝐡 0 𝐡 0 =1.5 𝑇 𝐡 0 =3.0 𝑇

4

5 Introduction The Effect of Dielectric Pads

6 Introduction Without pad With pad Without pad With pad
The Effect of Dielectric Pads Without pad With pad Without pad With pad

7 Introduction Design Procedure: Numerical Modeling

8 Challenges Strong (localised) inhomogeneities in medium parameters
Large computational domain due to the body model Accurate for low resolution! Fast! Take into account the boundary conditions

9 The Volume Integral Equation (VIE)
𝑬 𝑖𝑛𝑐 =π‘¬βˆ’ π‘˜ 𝑏 2 +π›»π›»βˆ™ 𝑺 πœ’ 𝑒 𝑬 𝑺(𝑱)= Ξ© 𝑔 π’™β€²βˆ’π’™ 𝑱 𝒙 𝑑𝒙

10 Different Formulations
𝑫 𝑐 = πœ€ 𝑐 𝑬 𝑱= πœ‚ 0 πœ’ 𝑒 𝑬 𝒩= π‘˜ 𝑏 2 +π›»π›»βˆ™ EVIE: 𝑬 𝑖𝑛𝑐 = 𝑬 βˆ’ 𝒩𝑺 πœ’ 𝑒 𝑬 DVIE: 𝑬 𝑖𝑛𝑐 = 1 πœ€ 𝑐 𝑫 𝑐 βˆ’ 𝒩𝑺( πœ’ 𝑒 πœ€ 𝑐 𝑫 𝑐 ) JVIE: πœ‚ 0 πœ’ 𝑒 𝑬 𝑖𝑛𝑐 = 𝑱 βˆ’ 𝒩𝑺(𝑱) πœ’ 𝑒

11 The Method of Moments ℒ𝑒=𝑓 Derive weak form ℒ𝑒,πœ‚ = 𝑓,πœ‚ .
Define a mesh. Expand the unknown 𝑒 through basis functions Ο† 𝑖 . Choose test functions πœ‚ 𝑖 . Calculate/approximate the integrals. Define the discretised system π‘Ž π‘₯π‘₯ π‘Ž π‘₯𝑦 π‘Ž 𝑦π‘₯ π‘Ž 𝑦𝑦 𝒆 π‘₯ 𝒆 𝑦 = 𝒃 π‘₯ 𝒃 𝑦 .

12 Test Functions Callocation Method: πœ‚ 𝑖 𝒙 = 𝛿 π’™βˆ’ 𝒙 𝑖
Galerkin’s Method: πœ‚ 𝑖 𝒙 = πœ‘ 𝑖 (𝒙)

13 Basis Functions Rooftop π‘₯ 𝑦 π‘₯ 𝑦

14 Basis Functions

15 A Closer Look EVIE Formulation
EVIE: 𝑬 𝑖𝑛𝑐 = 𝑬 βˆ’ 𝒩𝑺 πœ’ 𝑒 𝑬 DVIE: 𝑬 𝑖𝑛𝑐 = 1 πœ€ 𝑐 𝑫 𝑐 βˆ’ 𝒩𝑺( πœ’ 𝑒 πœ€ 𝑐 𝑫 𝑐 ) JVIE: πœ‚ 0 πœ’ 𝑒 𝑬 𝑖𝑛𝑐 = 𝑱 βˆ’ 𝒩𝑺(𝑱) πœ’ 𝑒

16 A Closer Look π‘₯ 𝑦 Scattering on a Two-Layered Cylinder TE-polarisation
𝐸 𝑖𝑛𝑐 =βˆ’ 𝑒 βˆ’π‘– π‘˜ 𝑏 𝑦 𝑓=128 𝐻𝑧 π‘₯ 𝑦

17 A Closer Look Scattering on a Two-Layered Cylinder

18 Some Observations Contrast: Low contrast vs high contrast
Basis functions: Rooftop vs 2 x linear Geometry: Cylinder vs square

19 Observation 1 Low Contrast vs High Contrast

20 Observation 1 Low Contrast vs High Contrast

21 Observation 2 Rooftop Expansion vs Linear Expansion

22 Observation 2 Rooftop Expansion vs Linear Expansion

23 Observation 3 Two-Layered Cylinder vs Two-Layered Square

24 Observation 3 Two-Layered Cylinder vs Two-Layered Square

25 What is the cause of these jumps?
Basis functions? Formulation? Geometry?

26 Approach Compare the EVIE formulation with the DVIE and JVIE formulations. Analysing contrast dependency. Find out what happens for different geometries. Compare the performance of GMRES and IDR(s) methods. Accurately Fast

27 Function Spaces EVIE: 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ 3 ⟼ 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ 3 DVIE: 𝐻 𝑑𝑖𝑣, ℝ 3 ⟼ 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ 3 JVIE: 𝐿 2 ℝ 3 3 ⟼ 𝐿 2 ℝ 3 3 where 𝐻 π‘π‘’π‘Ÿπ‘™, ℝ 3 = 𝑓 π‘“βˆˆ 𝐿 2 ℝ 3 ∧ π›»Γ—π‘“βˆˆ 𝐿 2 ℝ 3 𝐻 𝑑𝑖𝑣, ℝ 3 = 𝑓 π‘“βˆˆ 𝐿 2 ℝ 3 ∧ π›»βˆ™π‘“βˆˆ 𝐿 2 ℝ 3


Download ppt "Modeling Electromagnetic Fields"

Similar presentations


Ads by Google