Download presentation
Presentation is loading. Please wait.
Published byJack Robertson Modified over 5 years ago
1
State space model: linear: or in some text: where: u: input y: output x: state vector A, B, C, D are const matrices
2
Example
4
State transition, matrix exponential
5
State transition matrix: eAt
eAt is an nxn matrix eAt =ℒ-1((sI-A)-1), or ℒ (eAt)=(sI-A)-1 eAt= AeAt= eAtA eAt is invertible: (eAt)-1= e(-A)t eA0=I eAt1 eAt2= eA(t1+t2)
6
Example
7
I/O model to state space
Infinite many solutions, all equivalent. Controller canonical form:
8
I/O model to state space
Controller canonical form is not unique This is also controller canonical form
9
Example n= a a a a0 b b0=b2=b3=0
10
Characteristic values
Char. eq of a system is det(sI-A)=0 the polynomial det(sI-A) is called char. pol. the roots of char. eq. are char. values they are also the eigen-values of A e.g. ∴ (s+1)(s+2)2 is the char. pol. (s+1)(s+2)2=0 is the char. eq. s1=-1,s2=-2,s3=-2 are char. values or eigenvalues
12
can ? Set t=0 ∴No can ? √ at t=0: ? √
13
Solution of state space model
Recall: sX(s)-x(0)=AX(s)+BU(s) (sI-A)X(s)=BU(s)+x(0) X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=(ℒ-1(sI-A)-1))*Bu(t)+ ℒ-1(sI-A)-1) x(0) x(t)= eA(t-τ)Bu(τ)d τ+eAtx(0) y(t)= CeA(t-τ)Bu(τ)d τ+CeAtx(0)+Du(t)
14
But don’t use those for hand calculation
use:X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=ℒ-1{(sI-A)-1BU(s)}+{ℒ-1 (sI-A)-1} x(0) & Y(s)=C(sI-A)-1BU(s)+DU(s)+C(sI-A)-1x(0) y(t)= ℒ-1{C(sI-A)-1BU(s)+DU(s)}+C{ℒ-1 (sI-A)-1} x(0) e.g. If u= unit step
15
Note: T.F.=D+ C(sI-A)-1B
16
Eigenvalues, eigenvectors
Given a nxn square matrix A, nonzero vector p is called an eigenvector of A if Ap∝p i.e. λ s.t. Ap= λp λ is an eigenvalue of A Example: , Let , ∴p1 is an e-vector, & the e-value=1 ∴p2 is also an e-vector, assoc. with the λ =-2
17
Eigenvalues, eigenvectors
For a given nxn matrix A, if λ, p is an eigen-pair, then Ap= λp λp-Ap=0 λIp-Ap=0 (λI-A)p=0 ∵ p≠0 ∴ det(λI-A)=0 ∴ λ is a solution to the char. eq of A: det(λI-A)=0 char. pol. of nxn A has deg=n ∴ A has n eigen-values. e.g. A= , det(λI-A)=(λ-1)(λ+2)=0 ⇒ λ1=1, λ2=-2
18
If λ1 ≠λ2 ≠λ3⋯ then the corresponding p1, p2, ⋯ will be linearly independent, i.e., the matrix P=[p1⋮p2 ⋮ ⋯pn] will be invertible. Then: Ap1= λ1p1 Ap2= λ2p2 ⋮ A[p1⋮p2 ⋮ ⋯]=[Ap1⋮Ap2 ⋮ ⋯] =[λ1p1⋮ λ2p2 ⋮ ⋯] =[p1 p2 ⋯]
19
∴ AP=PΛ P-1AP= Λ=diag(λ1, λ2, ⋯)
∴If A has n linearly independent Eigenvectors, then A can be diagonalized. Note: Not all square matrices can be diagonalized.
20
Example
23
In Matlab >> A=[2 0 1; 0 2 1; 1 1 4]; >> [P,D]=eig(A) P =
; ]; >> [P,D]=eig(A) P = p p p3 D = λ1 λ2 λ3
24
If A does not have n linearly independent eigen-vectors
(some of the eigenvalues are identical), then A can not be diagonalized E.g. A= det(λI-A)= λ4+56λ3+1152λ λ+32768 λ1=-8 λ2=-16 λ3=-16 λ4=-16 by solving (λI-A)P=0 There are only two linearly independent eigen-vectors
25
>> A=[-12 8 -4 -4; 4 -24 4 4; -3 -6 -11 3; 9 -14 9 -9]
>> [P,D]=eig(A) P = i i i i i i D = i i
26
>>[P,J]=jordan(A)
Should use: >>[P,J]=jordan(A) P = J= a 3x3 Jordan block associated with λ=-16
27
More Matlab Examples >> s=sym('s'); >> A=[0 1;-2 -3];
>> det(s*eye(2)-A) ans = s^2+3*s+2 >> factor(ans) (s+2)*(s+1)
28
>> [P,D]=eig(A) P = D = >> [P,D]=jordan(A)
29
≠ A = 0 1 -2 -3 >> exp(A) ans = 1.0000 2.7183 0.1353 0.0498
>> exp(A) ans = >> expm(A) >> t=sym('t') >> expm(A*t) [ -exp(-2*t)+2*exp(-t), exp(-t)-exp(-2*t)] [ -2*exp(-t)+2*exp(-2*t), 2*exp(-2*t)-exp(-t)] ≠
30
√ √
31
Similarity transformation
same system as(#)
32
Example diagonalized decoupled
33
Invariance:
35
Controllability:
36
Example:
37
In Matlab: >> S=ctrb(A,B) >> r=rank(S) If S is square (when B is nx1) >> det(S)
38
Observability
39
Example:
40
Or if single output (ie V is square), can use >> det(V)
In Matlab: >> V=obsv(C,A) >> r=rank(V) rank must = n Or if single output (ie V is square), can use >> det(V) det must be nonzero Lookfor controllability Lookfor observability
42
Recall linear transformation:
Controllability=being able to use u(t) to drive any state to origin in finite time Observability=being able to computer any x(0) from observed y(t) After transformation, eigenvalues, char. poly, char. eq, char. values, T.F., poles, zeros un-changed, but eigenvector changed
43
Controllability is invariant under transf.
45
Observability invariant under transf.
47
State Feedback D r + u + 1 s x + y B C + - + A K
feedback from state x to control u
50
③Select any n eigenvalues(must be in complex conjugate pairs)
In Matlab: Given A,B,C,D ①Compute QC=ctrb(A,B) ②Check rank(QC) If it is n, then ③Select any n eigenvalues(must be in complex conjugate pairs) ev=[λ1; λ2; λ3;…; λn] ④Compute: K=place(A,B,ev) A+Bk will have eigenvalues at
51
Thm: Controllability is unchanged after state feedback.
But observability may change!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.