Download presentation
Presentation is loading. Please wait.
Published byGyles Dennis Modified over 5 years ago
1
4.8 Pivoting Implementing Gaussian Elimination computationally can lead to problems Happens if the element used to create zeros is small relative to other elements its column. E.g. 0.01 5.00 1.02 2.03 Small compared to 5.00
2
4.8 Pivoting Solve these two systems by G.E. Keep working to 3 s.f. 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 Determinant is roughly -5 in both cases Hence, get unique solution in both cases
3
4.8 Pivoting 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 r r2 – 500 r1 r r2 – 250r1 0.01 0.00 1.02 -508 4.32 -2160 0.02 0.00 1.01 -250 4.31 -1080 Big difference in x-value y = 4.25 and x= -1.5 y = 4.32 and x= -2.66
4
4.8 Pivoting 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 Get rid of small entries by pivoting Because circled entries are small we swap rows 1 and 2
5
4.8 Pivoting 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 r r2
6
4.8 Pivoting 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 r r2 r r2 r r2 – r1 0.00 5.00 1.02 2.03 4.32 1.21 y = 4.24 and x= -1.47
7
4.8 Pivoting 0.01 5.00 1.02 2.03 4.32 1.21 0.02 5.00 1.01 2.02 4.31 1.22 r r2 r r2 r r2 – r1 r r2 – r1 0.00 5.00 1.02 2.03 4.32 1.21 0.00 5.00 1.00 2.02 4.31 1.22 x-values comparable y = 4.24 and x= -1.47 y = 4.31 and x= -1.50
8
4.8 Pivoting Pivoting reduces numerical error by swapping rows
Use when our chosen element is small compared to other entries in its column
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.