Download presentation
Presentation is loading. Please wait.
Published bySusanto Salim Modified over 6 years ago
1
State space model: linear: or in some text: where: u: input y: output x: state vector A, B, C, D are const matrices
2
Example
4
State transition, matrix exponential
5
State transition matrix: eAt
def eAt = Inxn+At+ A2t A3t3 + eAt is an nxn matrix eAt =ℒ-1((sI-A)-1), or ℒ (eAt)=(sI-A)-1 eAt= AeAt= eAtA eAt is invertible: (eAt)-1= e(-A)t eA0=I eAt1 eAt2= eA(t1+t2)
6
Example
7
Example
8
I/O model to state space
Infinite many solutions, all equivalent. Controller canonical form:
9
I/O model to state space
Controller canonical form is not unique This is also controller canonical form
10
Example n= a a a a0 b b0=b2=b3=0
11
>> n=[1 2 3];d=[ ]; >> [A,B,C,D]=tf2ss(n,d) A = B = 1 C = D = >> tf(n,d) Transfer function: s^2 + 2 s + 3 s^3 + 4 s^2 + 5 s + 6
12
Characteristic values
Char. eq of a system is det(sI-A)=0 the polynomial det(sI-A) is called char. pol. the roots of char. eq. are char. values they are also the eigen-values of A e.g. ∴ (s+1)(s+2)2 is the char. pol. (s+1)(s+2)2=0 is the char. eq. s1=-1,s2=-2,s3=-2 are char. values or eigenvalues
14
can ? Set t=0 ∴No can ? √ at t=0: ? √
15
Solution of state space model
Recall: sX(s)-x(0)=AX(s)+BU(s) (sI-A)X(s)=BU(s)+x(0) X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=(ℒ-1(sI-A)-1))*Bu(t)+ ℒ-1(sI-A)-1) x(0) x(t)= eA(t-τ)Bu(τ)d τ+eAtx(0) y(t)= CeA(t-τ)Bu(τ)d τ+CeAtx(0)+Du(t)
16
But don’t use those for hand calculation
use:X(s)=(sI-A)-1BU(s)+(sI-A)-1x(0) x(t)=ℒ-1{(sI-A)-1BU(s)}+{ℒ-1 (sI-A)-1} x(0) & Y(s)=C(sI-A)-1BU(s)+DU(s)+C(sI-A)-1x(0) y(t)= ℒ-1{C(sI-A)-1BU(s)+DU(s)}+C{ℒ-1 (sI-A)-1} x(0) e.g. If u= unit step
17
Note: T.F.=D+ C(sI-A)-1B
18
Eigenvalues, eigenvectors
Given a nxn square matrix A, p is an eigenvector of A if Ap∝p i.e. λ s.t. Ap= λp λ is an eigenvalue of A Example: , Let , ∴p1 is an e-vector, & the e-value=1 ∴p2 is also an e-vector, assoc. with the λ =-2
19
In Matlab >> A=[2 0 1; 0 2 1; 1 1 4]; >> [P,D]=eig(A)
p p p3 D = λ1 λ2 λ3
20
If we use [P,D]=eig(A) get approximate but wrong answer Should use: >>[P,J]=jordan(A) P = J= a 3x3 Jordan block assoc. w/. λ=-16
21
In general, if λ, P is an e-pair for A,
AP= λP λP-AP=0 λIP-AP=0 (λI-A)P=0 ∵ P≠0 ∴ det(λI-A)=0 ∴ λ is a sol. of char. eq of A char. pol. of nxn A has deg=n ∴ A has n eigen-values. e.g. A= , det(λI-A)=(λ-1)(λ+2)=0 ⇒ λ1=1, λ2=-2
22
If λ1 ≠λ2 ≠λ3⋯ then the corresponding P1, P2, ⋯ will be linearly independent, i.e., the matrix P=[P1⋮P2 ⋮ ⋯Pn] will be invertible. AP1= λ1P1 AP2= λ2P2 ⋮ A[P1⋮P2 ⋮ ⋯]=[AP1⋮AP2 ⋮ ⋯] =[λ P1⋮ λ P2 ⋮ ⋯] =[P1 P2 ⋯]
23
∴ AP=PΛ P-1AP= Λ=diag(λ1, λ2, ⋯)
∴If A has n lin. ind. Eigenvectors then A can be diagonalized. Note: Not all square matrices can be diagonalized.
24
If A does not have n lin. ind. e-vectors
(some of the eigenvalues are identical), then A can not be diagonalized E.g. A= det(λI-A)= λ4+56λ3+1152λ λ+32768 λ1=-8 λ2=-16 λ3=-16 λ4=-16 by solving (λI-A)P=0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.