Download presentation
Presentation is loading. Please wait.
Published byAlice Walton Modified over 5 years ago
1
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
2
Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0. The Remainder Theorem states that if a polynomial is divided by (x – a), the remainder is the value of the function at a. So, if (x – a) is a factor of P(x), then P(a) = 0.
3
Example 1: Determining Whether a Linear Binomial is a Factor
Determine whether the given binomial is a factor of the polynomial P(x). A. (x + 1); (x2 – 3x + 1) B. (x + 2); (3x4 + 6x3 – 5x – 10) Find P(–1) by synthetic substitution. Find P(–2) by synthetic substitution. –1 1 –3 1 –1 4 –2 –5 –10 1 –4 5 –6 10 3 –5 P(–1) = 5 P(–1) ≠ 0, so (x + 1) is not a factor of P(x) = x2 – 3x + 1. P(–2) = 0, so (x + 2) is a factor of P(x) = 3x4 + 6x3 – 5x – 10.
4
You are already familiar with methods for factoring quadratic expressions. You can factor polynomials of higher degrees using many of the same methods you learned in Chapter 2. Two new methods of factoring are: Factoring by Grouping Sum and Difference of Cubes
5
Example 2: Factoring by Grouping
Factor: x3 – x2 – 25x + 25. (x3 – x2) + (–25x + 25) Group terms. Factor common monomials from each group. x2(x – 1) – 25(x – 1) Factor out the common binomial (x – 1). (x – 1)(x2 – 25) Factor the difference of squares. (x – 1)(x – 5)(x + 5)
6
Check It Out! Example 2a Factor: x3 – 2x2 – 9x + 18. (x3 – 2x2) + (–9x + 18) Group terms. Factor common monomials from each group. x2(x – 2) – 9(x – 2) Factor out the common binomial (x – 2). (x – 2)(x2 – 9) Factor the difference of squares. (x – 2)(x – 3)(x + 3)
7
Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.
8
Example 3A: Factoring the Sum or Difference of Two Cubes
Factor the expression. 4x x 4x(x3 + 27) Factor out the GCF, 4x. 4x(x3 + 33) Rewrite as the sum of cubes. Use the rule a3 + b3 = (a + b) (a2 – ab + b2). 4x(x + 3)(x2 – x ) 4x(x + 3)(x2 – 3x + 9)
9
Example 3B: Factoring the Sum or Difference of Two Cubes
Factor the expression. 125d3 – 8 Rewrite as the difference of cubes. (5d)3 – 23 (5d – 2)[(5d)2 + 5d ] Use the rule a3 – b3 = (a – b) (a2 + ab + b2). (5d – 2)(25d2 + 10d + 4)
10
Example 4: Geometry Application
The volume of a plastic storage box is modeled by the function V(x) = x3 + 6x2 + 3x – 10. Identify the values of x for which V(x) = 0, then use the graph to factor V(x). V(x) has three real zeros at x = –5, x = –2, and x = 1. If the model is accurate, the box will have no volume if x = –5, x = –2, or x = 1.
11
Example 4 Continued One corresponding factor is (x – 1). 1 –10 Use synthetic division to factor the polynomial. 1 7 10 1 7 10 V(x)= (x – 1)(x2 + 7x + 10) Write V(x) as a product. V(x)= (x – 1)(x + 2)(x + 5) Factor the quadratic.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.