Presentation is loading. Please wait.

Presentation is loading. Please wait.

Statistics for the Social Sciences

Similar presentations


Presentation on theme: "Statistics for the Social Sciences"— Presentation transcript:

1 Statistics for the Social Sciences
Psychology 340 Spring 2010 Analysis of Variance (ANOVA)

2 Outline (for week) Basics of ANOVA Why Computations
Post-hoc and planned comparisons Power and effect size for ANOVA Assumptions SPSS 1 factor between groups ANOVA

3 Outline (for week) Basics of ANOVA Why Computations
Post-hoc and planned comparisons Power and effect size for ANOVA Assumptions SPSS 1 factor between groups ANOVA

4 Example Effect of knowledge of prior behavior on jury decisions
Dependent variable: rate how innocent/guilty Independent variable: 3 levels Criminal record Clean record No information (no mention of a record) Clean record Jurors Guilt Rating Criminal record No Information Compare the means of these three groups

5 Statistical analysis follows design
The 1 factor between groups ANOVA: More than two Independent & One score per subject 1 independent variable

6 Analysis of Variance Generic test statistic More than two groups XB XA
XC More than two groups Now we can’t just compute a simple difference score since there are more than one difference Criminal record Clean record No information 10 5 4 7 1 6 3 9 8

7 Analysis of Variance test statistic F-ratio = More than two groups XB
XA XC Observed variance Variance from chance F-ratio = More than two groups Criminal record Clean record No information 10 5 4 7 1 6 3 9 8 Need a measure that describes several difference scores Variance Variance is essentially an average squared difference Tip: Many different groupings so use subscripts to keep things straight

8 Testing Hypotheses with ANOVA
Hypothesis testing: a five step program Step 1: State your hypotheses Null hypothesis (H0) All of the populations all have same mean Alternative hypotheses (HA) Not all of the populations all have same mean There are several alternative hypotheses We will return to this issue later

9 Testing Hypotheses with ANOVA
Hypothesis testing: a five step program Step 1: State your hypotheses Step 2: Set your decision criteria Step 3: Collect your data Step 4: Compute your test statistics Compute your estimated variances Compute your F-ratio Compute your degrees of freedom (there are several) Step 5: Make a decision about your null hypothesis Additional tests Reconciling our multiple alternative hypotheses

10 Step 4: Computing the F-ratio
Analyzing the sources of variance Describe the total variance in the dependent measure Why are these scores different? Two sources of variability Within groups Between groups XB XA XC

11 Step 4: Computing the F-ratio
Within-groups estimate of the population variance Estimating population variance from variation from within each sample Not affected by whether the null hypothesis is true Different people within each group give different ratings XB XA XC

12 Step 4: Computing the F-ratio
Between-groups estimate of the population variance Estimating population variance from variation between the means of the samples Is affected by whether the null hypothesis is true There is an effect of the IV, so the people in different groups give different ratings XB XA XC

13 Partitioning the variance
Note: we will start with SS, but will get to variance Total variance Stage 1 Between groups variance Within groups variance

14 Partitioning the variance
Total variance Basically forgetting about separate groups Compute the Grand Mean (GM) Compute squared deviations from the Grand Mean Criminal record Clean record No information 10 5 4 7 1 6 3 9 8

15 Partitioning the variance
Total variance Basically forgetting about separate groups Compute the Grand Mean (GM) Compute squared deviations from the Grand Mean Criminal record Clean record No information 10 5 4 7 1 6 3 9 8 Formula alert:

16 Partitioning the variance
Total variance Stage 1 Between groups variance Within groups variance

17 Partitioning the variance
Within groups variance Basically the variability in each group Add up of the SS from all of the groups Criminal record Clean record No information 10 5 4 7 1 6 3 9 8

18 Partitioning the variance
Total variance Stage 1 Within groups variance Between groups variance

19 Partitioning the variance
Between groups variance Basically how much each group differs from the Grand Mean Subtract the GM from each group mean Square the diffs Weight by number of scores Criminal record Clean record No information 10 5 4 7 1 6 3 9 8

20 Partitioning the variance
Between groups variance Basically how much each group differs from the Grand Mean Subtract the GM from each group mean Square the diffs Weight by number of scores Criminal record Clean record No information 10 5 4 7 1 6 3 9 8 Formula alert: T=treatment total N=#scores in treatment G=grand total

21 Partitioning the variance
Total variance Stage 1 Between groups variance Within groups variance

22 Partitioning the variance
Now we return to variance. But, we call it Means Square (MS) Total variance Recall: Stage 1 Between groups variance Within groups variance

23 Partitioning the variance
Mean Squares (Variance) Between groups variance Within groups variance

24 Step 4: Computing the F-ratio
Ratio of the between-groups to the within-groups population variance estimate Observed variance Variance from chance F-ratio = The F distribution The F table Do we reject or fail to reject the H0?

25 Carrying out an ANOVA The F distribution The F table Need two df’s
dfbetween (numerator) dfwithin (denominator) Values in the table correspond to critical F’s Reject the H0 if your computed value is greater than or equal to the critical F Often separate tables for 0.05 & 0.01

26 Carrying out an ANOVA The F distribution The F table Need two df’s
Table B-4, pg Need two df’s dfbetween (numerator) dfwithin (denominator) Values in the table correspond to critical F’s Reject the H0 if your computed value is greater than or equal to the critical F Often separate tables for 0.05 & 0.01 Lightface type are Fcrits for α = 0.05 Boldface type are Fcrits for α = 0.01 Denominator df 1 2 3 4 5 6 162 4,052 200 5,000 216 5,404 225 5,625 230 5,764 234 5,859 18.51 98.50 19.0 99.0 19.17 99.17 19.25 99.25 19.30 99.30 19.33 99.33 10.13 34.12 9.55 30.82 9.28 29.46 9.12 28.71 9.01 28.24 8.94 27.91 7.71 21.20 6.95 18.0 6.59 16.7 6.39 15.98 6.26 15.52 6.16 15.21 6.61 16.26 5.79 13.27 5.41 12.06 5.19 11.39 5.05 10.97 4.95 10.67 5.99 13.75 5.14 10.93 4.76 9.78 4.53 9.15 4.39 8.75 4.28 8.47 Numerator df

27 Carrying out an ANOVA The F table Need two df’s
dfbetween (numerator) dfwithin (denominator) Values in the table correspond to critical F’s Reject the H0 if your computed value is greater than or equal to the critical F Often separate tables for 0.05 & 0.01 Do we reject or fail to reject the H0? From the table (assuming 0.05) with 2 and 12 degrees of freedom the critical F = 3.89. So we reject H0 and conclude that not all groups are the same

28 Summary of Example ANOVA
Criminal record Clean record No information 10 5 4 7 1 6 3 9 8 Fcrit(2,12) = 3.89, so we reject H0

29 Next time Basics of ANOVA Why Computations
Post-hoc and planned comparisons Power and effect size for ANOVA Assumptions SPSS 1 factor between groups ANOVA


Download ppt "Statistics for the Social Sciences"

Similar presentations


Ads by Google