Presentation is loading. Please wait.

Presentation is loading. Please wait.

He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering

Similar presentations


Presentation on theme: "He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering"β€” Presentation transcript:

1 Intelligent wavefront sensing and control for exoplanet coronagraphic imaging instrument
He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering Princeton University 4/6/2019

2 High Contrast Coronagraph Imaging
Coronagraph = series of masks, stops, and/or apodizers to remove starlight but transmit off-axis sources (e.g., exoplanets) Quasi-static aberrations from in the system degrade the contrast in the dark holes Shaped Pupil Lyot Coronagraph (WFIRST CGI) Zimmerman+ 2016 Shaped Pupil Focal Plane Mask On-axis PSF at camera Lyot Stop 10-9 contrast 10-4 contrast 4/6/2019

3 Wavefront Sensing and Control for CGI
Deformable Mirror #1 Light field Controller Estimator Camera Image Deformable Mirror #2 Coronagraph Star and planet Light 1. Sensing commands and images for estimation; 2. Control commands for correction; 4/6/2019

4 Wavefront Sensing and Control for CGI
3. Wavefront Control: 𝑒 π‘˜+1 =πœ‹ 𝐸 π‘˜ Wavefront Sensing (Estimation): 𝐸 π‘˜ ~𝑝( 𝐸 π‘˜ | 𝐸 π‘˜βˆ’1 , 𝐼 π‘˜ 𝑝 , 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 ) Science Camera Controller Optical System Deformable Mirrors Coronagraph Telescope Images Estimator Commands Focal Plane Wavefront Control Estimated States 𝐸 π‘Žπ‘ 𝑒 𝑖 Ξ” πœ™ π‘˜ 𝐢 βˆ™ 𝐸 π‘˜ 𝐼 π‘˜ , 𝐼 π‘˜ 𝑝 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 𝐸 π‘˜ Light Field System modeled as state space model with Gaussian noises: 𝐸 π‘˜ = 𝑓(𝐸 π‘˜βˆ’1 , 𝑒 π‘˜ )+ 𝑀 π‘˜ , 𝐼 π‘˜ 𝑝 = 𝑓 𝐸 π‘˜ , 𝑒 π‘˜ 𝑝 𝑛 π‘˜ . 4/6/2019

5 Princeton High Contrast Imaging Lab
4/6/2019 High Contrast Imaging Lab, Princeton University

6 Wavefront Sensing and Control Simulation (Monochromatic)
Model accuracy is one of the key limitations. Biased model: not know the surface aberrations on mirrors or lenses and the accurate DM surface response 4/6/2019

7 Adaptive Wavefront Sensing and Control
Model Fitting Wavefront Estimator Estimated States E-M Model Identification Commands, Images A reinforcement learning algorithm: Improve the control based on past experience Focal Plane Wavefront Control Controller Estimator Estimated States Commands Images Light Telescope Deformable Mirrors Coronagraph Science Camera Optical System 4/6/2019 Sun, He, et al., Identication and adaptive control of a high-contrast focal plane wavefront correction system, JATIS., 2018

8 E-M Model Identification
𝑬 π’Œ 𝒀 ={ 𝑰 π’Œ 𝒑 , 𝒖 π’Œ , 𝒖 π’Œ 𝒑 } 𝑰 π’Œ 𝒑 = 𝒇 𝜽 ( 𝑬 π’Œ , 𝒖 π’Œ 𝒑 ) 𝟐 + 𝒏 π’Œ 𝑬 π’Œ = 𝒇 𝜽 ( 𝑬 π’Œβˆ’πŸ , 𝒖 π’Œ )+ π’˜ π’Œ Model Fitting Wavefront Estimator Estimated States E-M Model Identification Commands, Images E-M algorithm: iterative method for identifying system with hidden states E-step: Estimate the hidden state using data, 𝐸 π‘˜ ~ 𝑝 πœƒ ( 𝐸 π‘˜ | 𝐼 π‘˜ 𝑝 , 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 ) M-step: Fit state and data to the model parameters, πœƒ=π‘Žπ‘Ÿπ‘”π‘šπ‘Ž π‘₯ πœƒ 𝑝 πœƒ ( 𝐸 π‘˜ , 𝐼 π‘˜ 𝑝 | 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 ) 4/6/2019

9 Adaptive Wavefront Sensing and Control Simulation (Monochromatic)
Adaptive control helps close the gap between the biased model and the true model. 4/6/2019

10 Experimental Results (Monochromatic)
Log scale Control Step 4/6/2019

11 Active Wavefront Sensing
Wavefront estimator predicts the estimation covariance. 𝐸 π‘˜ ~𝑁(πœ‡ 𝐼 π‘˜ 𝑝 , 𝑒 π‘˜ 𝑝 , 𝐸 π‘˜βˆ’1 , 𝑒 π‘˜ ,Ξ£ 𝐸 π‘˜βˆ’1 , 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 In each control step, we can optimally choose the DM sensing commands by minimizing the estimation uncertainty, 𝑒 π‘˜ π‘βˆ— =π‘Žπ‘Ÿπ‘”π‘šπ‘– 𝑛 𝑒 π‘˜ 𝑝 π‘™π‘œπ‘” Ξ£ 𝐸 π‘˜βˆ’1 , 𝑒 π‘˜ , 𝑒 π‘˜ 𝑝 +𝛼 𝑒 π‘˜ 𝑝 2 2 It considers the estimation uncertainties of last step to design a optimal sensing command. An active sensing (optimal experiment design) algorithm: optimally acquire the needed knowledge 4/6/2019

12 Active Wavefront Sensing Simulation
1DM Optimized DM sensing commands lead to more accurate estimation, higher contrast, and faster wavefront correction. 4/6/2019

13 Summary Two new AI techniques for improving WFSC for CGI:
Reinforcement learning improves model accuracy and enables online adaptive wavefront control; Active sensing reduces the wavefront estimation uncertainties, improve the contrast and correction speed. Future work: Adaptive identification and control with broadband measurements from IFS; 4/6/2019

14 Acknowledgements Princeton High Contrast Imaging Lab 10/05/2018
4/6/2019


Download ppt "He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering"

Similar presentations


Ads by Google