Presentation is loading. Please wait.

Presentation is loading. Please wait.

in c-tau factory detector

Similar presentations


Presentation on theme: "in c-tau factory detector"— Presentation transcript:

1 in c-tau factory detector
Simulations of physics background in c-tau factory detector L.Shekhtman Budker INP, Novosibirsk State University

2 Main physical background sources:
Two-photon processes e+e-  g*g*e+e-e+e- 6 mb (at 3.5 GeV per beam) Radiative Bha-Bha e+e- e+e-g(ng) (q>5mrad, Eg>3MeV) 1.7 mb (at 3.5 GeV per beam) With 1035 cm-2s-1 - ~8x108 background events per second If frequency of bunch crossings is 2x ~4 events per crossing, ~8 background particles with q>5mrad

3 Generated: 1 mln. events with two-photon e+e- production, generator diag36, cross-section ~6 mb (F.Ignatov) 105 e+e-ng, generator BHWIDE (LEP/SLC), cечение 1.7 mb (q>5mrad, Eg>3MeV) (help of V.Tayurskij) Simulation of background particles fluxes is performed with FLUKA package ( Main goal is to estimate background particle fluxes at the region of Inner Tracker, to get occupancy values for different options of IT

4 Basis for geometry description

5 CTD geometry in FLUKA R, cm Concrete Iron Aluminum CsI Aerogel Air VP
He+40%C3H8 Air Ar VP Z, cm

6 Magnetic field B, T R, cm 100 100 100 200 Z, cm R, cm 100 260 Z, cm

7 Electrons & positrons (TPC)
1/cm2s R, cm Z, cm

8 Electrons & positrons 1/cm2s Y, cm X, cm

9 Photons 1/cm2s R, cm Z, cm

10 1-MeV neutron equivalent flux for Si
1/cm2s R, cm Z, cm

11 Absorbed dose G/y R, cm Z, cm

12 Spectra in Inner Tracker volume

13 v09 v10 R, cm R, cm Comparison with v08

14 Thickness of end-cap TPC wall affects the flux
v026 Thickness of end-cap TPC wall affects the flux v026 v06 R, cm

15 Options of Inner Tracker
Channel size Time of the measurement TPC 1x1 mm2 100 ns Si-strip detector 300x0.2 mm2 10 ns CGEM detector 300x0.4 mm2 Straw tubes ~600x10 mm2 Compact drift chamber ~600x5 mm2

16 TPC, rates e+e- particles/cm2

17 TPC, occupancy (fraction of time when system is busy)
Time slice 100 ns – factor 10-7 Readout pads 1x1 mm2 – factor 0.01 Occupancy = rate x 10-9 10-4 – 10-6 Ion space charge Rate 105 – 3x1011 ions in region 1x1x30cm3 (10% ion backflow) Field of space charge Esc~ Q/e0 = 50 V/cm External field – 500 V/cm

18 Straw tubes, rate Rates 105 (!) – 103 particles/cm2s

19 1 – 0.01 Straw tubes, occupancy Length – 60 cm, factor 60
Drift time 100 ns – factor 10-7 Occupancy = rate x 6x10-6 1 – 0.01 Charge flow 105 tracks per cm per s -> 107 primary electrons Gas ampl. 105 –> 1012 e = 1.6x10-7C/sxcm = 1.6 C/cm per year

20 Si-strip detectors Rate 105 – 103 cm-2s-1 Channel size 0.02x30 cm2 Time – 10 ns Occupancy = Rate x 0.6x10-8

21 CGEM detector Rate 105 – 103 cm-2s-1 Channel size 0.04x30 cm2 Time – 100 ns Occupancy = Rate x 1.2x10-7

22 Conclusions Charge particles rate in the region of Inner Tracker 105 – 103 cm-2s-1 Occupancies are too high for straw tube option (and for compact drift chamber) Occupancies for other options of IT are acceptable 1 MeV n-equivalent flux for Si is below 1011 n/cm2y Absorbed dose is below 100 Gy/y (rad-tolerant electronics needed)


Download ppt "in c-tau factory detector"

Similar presentations


Ads by Google