Download presentation
Presentation is loading. Please wait.
1
Reich's Backlog Equation (1958)
\documentclass[10pt]{article} \usepackage{color} %used for font color \usepackage{amssymb} %maths \usepackage{amsmath} %maths \usepackage[utf8]{inputenc} %useful to type directly diacritic characters \begin{document} {\sf \fbox{\parbox[t]{3in}{ {\sc Reich's backlog equation:} Given a left-continuous arrival function $A$ and a buffered link with capacity $C$. Then for all $t \geq 0$ it holds that \[ \label{eq:reich-backlog} B(t) = \sup_{0\leq s \leq t} \left\{ A(t) - A(s) - C(t-s) \right\} \ . \] }}} \end{document}
3
Introduction to Network Calculus (min, +) Algebra
4
Traffic process: Non-negative and non-decreasing and one-sided process
7
Burst and Delay Functions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.