Download presentation
Presentation is loading. Please wait.
Published byHartanti Sudjarwadi Modified over 5 years ago
1
On Approximating Covering Integer Programs
Chandra Chekuri Univ. of Illinois, Urbana-Champaign Joint work with Kent Quanrud Workshop on Flexible Network Design, May 2018
2
Set Cover U = {1, 2, β¦, m} Sets S1, S2, β¦, Sn each a subset of U
ci : non-negative cost of Si Goal: Find min-cost sub-collection of S1, S2, β¦, Sn whose union is U Parameters: m, n, N = π π π size of instance β : max set size, Ξ : max frequency over elements
3
Approximating Set Cover
Greedy algorithm: Hβ β€ 1 + ln β β€ 1 + ln m [Johnsonβ74, Steinβ74, Lovaszβ75, Chavtalβ79] LP rounding: Ξ [Hochbaumβ82] O(log m) [Raghavan-Thompsonβ87] O(log β) [Srinivasanβ96,01,06,β¦] Ξ (1βexpβ‘(β ln Ξ/(Ξβ1)) ) [Saket-Sviridenkoβ12] Unweighted, special cases, many results β¦.
4
Hardness of Approximation
No (1- β) ln m approx. unless P = NP [Moshkovitzβ15, Feigeβ98] No ln β - ln ln β approx. unless P = NP [Trevisanβ01] No (Ξ - β) approx. under UGC [Bansal-Khotβ10] No (Ξ β 1 - β) approx. unless P = NP [Dinur et alβ03]
5
Covering Integer Programs
min π=1 π π π π₯ π π΄π₯β₯π π₯β€π π₯β π + π π΄β π
+ π π₯ π , πβ π
+ π , πβ π
+ π , πβ π
+ π CIP : with multiplicity constraints CIPβ : without multiplicity constraints, dj = β
6
Normalization and Parameters
min π=1 π π π π₯ π π΄π₯β₯π π₯β€π π₯β π + π π΄β 0,1 π π₯ π , πβ₯1, πβ π + π , πβ π
+ π β0 max # of non-zeroes in a column β1 max column sum Ξ0 max # of non-zeroes in a row Ξ1 max row sum Under normalization β1 β€ β0 and Ξ1 β€ Ξ0
7
Approximating CIPs Greedy algorithm: Hβ* β€ 1 + ln β* where β* is max column sum when A is normalized to integers. Can be as large as m [Dobsonβ82, Wolsey] LP rounding: O(log m) for CIPβ [Raghavan-Thompson] O(log β) for CIPβ [Srinivasanβ99] O(log β) for CIP using Knapsack-Cover inequalities [Kolliopoulos-Youngβ00] [Chen-Harris-Srinivasanβ16] tight bounds
8
Knapsack Cover Inequalities
Basic-LP has large integrality gap for CIP [Carr-Fleischer-Leung-Phillipsβ00] KC-inequalities min π=1 π π π π₯ π π΄π₯β₯π π₯β€π π₯β₯0 min π=1 π π π π₯ π π΄ π π₯β₯ π π πππ πππ πβ[π] π₯β₯0 π π,π =maxβ‘{0, π π β πβπ π΄ π,π π π } π΄ π,π,π = 0 ππ πβπ πππ{ π΄ π,π , π π,π }
9
Approximating CIPs [Chen-Harris-Srinivasanβ16]
Focus of this talk: Ξ 0 , Ξ 1 are β₯ some fixed constant C [Chen-Harris-Srinivasanβ16] CIP: ln Ξ 0 +π( ln Ξ 0 ) via KC-LP CIPβ : [1 + ln (1+Ξ 1 ) ππππ +4 ln (1+ Ξ 1 ) ππππ ] via Basic-LP Bicriteria for CIP: output π§β€ 1+π π with cost approx ln (1+ Ξ 1 ) π ππππ +5 ln (1+Ξ 1 ) ππππ via Basic-LP Resampling framework following constructive versions of LLL [Moser-Tardos and others including Harris-Srinivasan β¦]
10
β1 bound Ξ1 can be much smaller than Ξ0 More robust to noise in data
Technically interesting
11
Our Results Fast approximation scheme for solving KC-LP
Simple and (slightly) improved approximations for CIP and CIPβ based on round+fix framework Easy derandomization of algorithms: first deterministic algorithms with near-tight bounds
12
Solving KC-LP [Carr etal]
Ellipsoid method via separation oracle for Knapsack Cover. MWU based approximation scheme. (1+Ξ΅)- approximation in O(nN log C poly(1/Ξ΅)) time Our result: O(N log C poly(1/Ξ΅)) time. Near-linear if C is poly-bounded
13
[Chen-Harris-Srinivasanβ16]
Approximation Bounds [Chen-Harris-Srinivasanβ16] New CIP: ln Ξ 0 +π( ln Ξ 0 ) KC-LP CIPβ : [1+ ln Ξ 1 ππππ +4 ln Ξ 1 ππππ ] Basic-LP CIP: output π§β€ 1+π π cost approx 1+4 ln Ξ 1 π ππππ +5 ln Ξ 1 ππππ via Basic-LP ln Ξ 0 + ln ln Ξ 0 +π(1) [ ln Ξ 1 ππππ +ln ln Ξ 1 ππππ +O(1)] ln Ξ 1 ππππ +ln ln Ξ 1 ππππ +π( ln 1/π) via KC-LP Row sparsity: (1+ Ξ0) for CIP and (1 + Ξ1) for CIPβ : tight Focus of this talk: Ξ 0 , Ξ 1 are β₯ some fixed constant C
14
Round+Fix Algorithm [Srinivasanβ01,Saket-Sviridenkoβ12,Gupta-Nagarajanβ16] Solve LP relaxation: x fractional solution Pick parameter Ξ± β₯ 1 and randomly and independently set zj to πΌ π₯ π or πΌ π₯ π s.t πΈ π§ π =πΌ π₯ π For each unsatisfied constraint i (ie π΄π§ π < π π ) do y(i) is solution to knapsack cover problem induced by constraint i π§βπ§β¨ π¦ (π) Output z
15
Round+Fix Algorithm for CIP
Solve KC-LP relaxation: x fractional solution Pick parameter Ξ± β₯ 1. If βπΌ π₯ π > π π ) set zj to dj Else randomly and independently set zj to πΌ π₯ π or πΌ π₯ π s.t πΈ π§ π = πΌ π₯ π For each unsatisfied constraint i (ie π΄π§ π < π π ) do y(i) is solution to knapsack cover problem induced by constraint i π§βπ§β¨ π¦ (π) Output z
16
Knapsack Cover CIP with m = 1 (single covering constraint)
min ππ₯ π .π‘ ππ₯β₯π, π₯β€π, π₯β π + π KC-LP integrality gap is 2 [Carr et al] Basic LP: given x, there is is integer solution z s.t and πβ
π§β€2 πβ
π₯ and π§β€β2 π₯β. FPTAS via DP
17
High-level Analysis of Round+Fix
Output is feasible solution by construction Expected cost? pi : probability that i not covered πΌ πβ
π₯+ π π π (πβ
π¦ π )
18
Only tool: Chernoff Bound
X1, X2, β¦, Xn independent random variables in [0,1] π= π π π πππ πΈ π =π Pr π< 1βπΏ π β€ π βπΏ 1βπΏ 1βπΏ π Pr π<1 β€ exp 1 βπ+ ln π If X1, X2, β¦, Xn in [0,Ξ³] Pr π<1 β€ exp 1 πΎ (1 βπ+ ln π )
19
CIPβ: Ax β₯ 1, x β₯ 0 Round+Fix algorithm, choose πΌ= ln Ξ 0 + ln ln Ξ 0 +π(1) pi = Pr[ (Az)i < 1 ] β€ exp(1 β Ξ± + ln Ξ±) β€ 1/(2β0) Expected cost: πΌ πβ
π₯+ π π π (πβ
π¦ π ) π π π (πβ
π¦ π ) β€ 1 2Ξ 0 π 2 π: π΄ π,π >0 π π π₯ π β€ π π π π₯ π Hence (Ξ± + 1) LP-Cost
20
CIP: Ax β₯ 1, x β€ d, x β₯ 0 Round+Fix algorithm, choose πΌ= ln Ξ 0 + ln ln Ξ 0 +π(1) Same analysis gives Ξ± + 1 approx. wrt KC-LP
21
CIPβ: Ax β₯ 1, x β₯ 0, β1 bound Round+Fix algorithm, choose πΌ= ln Ξ 1 + ln ln Ξ 1 +π(1) Claim: Expected cost is (Ξ± + O(1)) LP-Cost Proof a bit clever but still relies only on Chernoff bound
22
β1 bound: intuition πΌ= ln Ξ 1 + ln ln Ξ 1 +π(1) Understand pi which can be non-uniform πΌ π π΄ π,π π₯ π β₯1β
πΌ Suppose Ai,j β€ Ξ³ for all j then pi = Pr[ (Az)i < 1 ] β€ exp((1 β Ξ± + ln Ξ±)/Ξ³) β€ Ξ³/(2β1)
23
β1 bound: intuition Suppose Ai,j = Ξ³ or 0 for all j then pi = Pr[ (Az)i < 1 ] β€ exp((1 β Ξ± + ln Ξ±)/Ξ³) β€ Ξ³/(2β1) π π πβ
π¦ π β€ πΎ 2Ξ 1 2 π: π΄ π,π >0 π π π₯ π = 1 2 Ξ 1 π: π΄ π,π >0 π π π¨ π,π π₯ π
24
β1 bound: general case Constraint i: π π΄ π,π π₯ π β₯1 There exists Οi such that π: π΄ π,π β₯ π π π΄ π,π π₯ π β₯ 1 2 and π: π΄ π,π β€ π π π΄ π,π π₯ π β₯ 1 2 Pr[ (Az)i < 1 ] β€ exp((1 β Ξ±/2 + ln Ξ±/2)/Οi) β€ O(Οi/β1)
25
β1 bound: general case π: π΄ π,π β₯ π π π΄ π,π π₯ π β₯ 1 2 and π: π΄ π,π β€ π π π΄ π,π π₯ π β₯ 1 2 Pr[ (Az)i < 1 ] β€ exp((1 β Ξ±/2 + ln Ξ±/2)/Οi) β€ O(Οi/β1) Expected cost: πΌ πβ
π₯+ π π π (πβ
π¦ π ) π π π (πβ
π¦ π ) β€π( π π Ξ 1 ) π 4 π: π΄ π,π β₯ π π π π π₯ π β€π 1 Ξ 1 π π π π π΄ π,π π₯ π β€π 1 πβ
π₯ Hence expected cost is (Ξ± + O(1)) LP-Cost
26
Derandomization Algorithm is simple. Feasibility guaranteed, only cost is random. Analysis relies only on simple Chernoff bound Use method of conditional expectations via Chernoff bound derivation-formula as pessimistic estimator Easy and efficient deterministic algorithm
27
Conclusions Fast (near-linear) approximation scheme to solve KC-LP
Randomized rounding + fixing appears to be a universal algorithm for Set Cover and CIPs: for each scenario different parameter Ξ±. Algorithm: try βallβ values of Ξ± and take the best. Oblivious to parameters and may work better in practice. Derandomization
28
Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.