Presentation is loading. Please wait.

Presentation is loading. Please wait.

On Approximating Covering Integer Programs

Similar presentations


Presentation on theme: "On Approximating Covering Integer Programs"β€” Presentation transcript:

1 On Approximating Covering Integer Programs
Chandra Chekuri Univ. of Illinois, Urbana-Champaign Joint work with Kent Quanrud Workshop on Flexible Network Design, May 2018

2 Set Cover U = {1, 2, …, m} Sets S1, S2, …, Sn each a subset of U
ci : non-negative cost of Si Goal: Find min-cost sub-collection of S1, S2, …, Sn whose union is U Parameters: m, n, N = 𝑖 𝑆 𝑖 size of instance βˆ† : max set size, Ξ“ : max frequency over elements

3 Approximating Set Cover
Greedy algorithm: Hβˆ† ≀ 1 + ln βˆ† ≀ 1 + ln m [Johnson’74, Stein’74, Lovasz’75, Chavtal’79] LP rounding: Ξ“ [Hochbaum’82] O(log m) [Raghavan-Thompson’87] O(log βˆ†) [Srinivasan’96,01,06,…] Ξ“ (1βˆ’exp⁑(βˆ’ ln Ξ”/(Ξ“βˆ’1)) ) [Saket-Sviridenko’12] Unweighted, special cases, many results ….

4 Hardness of Approximation
No (1- ℇ) ln m approx. unless P = NP [Moshkovitz’15, Feige’98] No ln βˆ† - ln ln βˆ† approx. unless P = NP [Trevisan’01] No (Ξ“ - ℇ) approx. under UGC [Bansal-Khot’10] No (Ξ“ – 1 - ℇ) approx. unless P = NP [Dinur et al’03]

5 Covering Integer Programs
min 𝑗=1 𝑛 𝑐 𝑗 π‘₯ 𝑗 𝐴π‘₯β‰₯𝑏 π‘₯≀𝑑 π‘₯∈ 𝑍 + 𝑛 𝐴∈ 𝑅 + π‘š π‘₯ 𝑛 , π‘βˆˆ 𝑅 + π‘š , π‘‘βˆˆ 𝑅 + 𝑛 , π‘βˆˆ 𝑅 + 𝑛 CIP : with multiplicity constraints CIP∞ : without multiplicity constraints, dj = ∞

6 Normalization and Parameters
min 𝑗=1 𝑛 𝑐 𝑗 π‘₯ 𝑗 𝐴π‘₯β‰₯𝑏 π‘₯≀𝑑 π‘₯∈ 𝑍 + 𝑛 𝐴∈ 0,1 π‘š π‘₯ 𝑛 , 𝑏β‰₯1, π‘‘βˆˆ 𝑍 + 𝑛 , π‘βˆˆ 𝑅 + 𝑛 βˆ†0 max # of non-zeroes in a column βˆ†1 max column sum Ξ“0 max # of non-zeroes in a row Ξ“1 max row sum Under normalization βˆ†1 ≀ βˆ†0 and Ξ“1 ≀ Ξ“0

7 Approximating CIPs Greedy algorithm: Hβˆ†* ≀ 1 + ln βˆ†* where βˆ†* is max column sum when A is normalized to integers. Can be as large as m [Dobson’82, Wolsey] LP rounding: O(log m) for CIP∞ [Raghavan-Thompson] O(log βˆ†) for CIP∞ [Srinivasan’99] O(log βˆ†) for CIP using Knapsack-Cover inequalities [Kolliopoulos-Young’00] [Chen-Harris-Srinivasan’16] tight bounds

8 Knapsack Cover Inequalities
Basic-LP has large integrality gap for CIP [Carr-Fleischer-Leung-Phillips’00] KC-inequalities min 𝑗=1 𝑛 𝑐 𝑗 π‘₯ 𝑗 𝐴π‘₯β‰₯𝑏 π‘₯≀𝑑 π‘₯β‰₯0 min 𝑗=1 𝑛 𝑐 𝑗 π‘₯ 𝑗 𝐴 𝑆 π‘₯β‰₯ 𝑏 𝑆 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘†βŠ‚[𝑛] π‘₯β‰₯0 𝑏 𝑆,𝑖 =max⁑{0, 𝑏 𝑖 βˆ’ π‘—βˆˆπ‘† 𝐴 𝑖,𝑗 𝑑 𝑗 } 𝐴 𝑆,𝑖,𝑗 = 0 𝑖𝑓 π‘—βˆˆπ‘† π‘šπ‘–π‘›{ 𝐴 𝑖,𝑗 , 𝑏 𝑆,𝑖 }

9 Approximating CIPs [Chen-Harris-Srinivasan’16]
Focus of this talk: Ξ” 0 , Ξ” 1 are β‰₯ some fixed constant C [Chen-Harris-Srinivasan’16] CIP: ln Ξ” 0 +𝑂( ln Ξ” 0 ) via KC-LP CIP∞ : [1 + ln (1+Ξ” 1 ) π‘π‘šπ‘–π‘› +4 ln (1+ Ξ” 1 ) π‘π‘šπ‘–π‘› ] via Basic-LP Bicriteria for CIP: output 𝑧≀ 1+πœ– 𝑑 with cost approx ln (1+ Ξ” 1 ) πœ– π‘π‘šπ‘–π‘› +5 ln (1+Ξ” 1 ) π‘π‘šπ‘–π‘› via Basic-LP Resampling framework following constructive versions of LLL [Moser-Tardos and others including Harris-Srinivasan …]

10 βˆ†1 bound Ξ”1 can be much smaller than Ξ”0 More robust to noise in data
Technically interesting

11 Our Results Fast approximation scheme for solving KC-LP
Simple and (slightly) improved approximations for CIP and CIP∞ based on round+fix framework Easy derandomization of algorithms: first deterministic algorithms with near-tight bounds

12 Solving KC-LP [Carr etal]
Ellipsoid method via separation oracle for Knapsack Cover. MWU based approximation scheme. (1+Ξ΅)- approximation in O(nN log C poly(1/Ξ΅)) time Our result: O(N log C poly(1/Ξ΅)) time. Near-linear if C is poly-bounded

13 [Chen-Harris-Srinivasan’16]
Approximation Bounds [Chen-Harris-Srinivasan’16] New CIP: ln Ξ” 0 +𝑂( ln Ξ” 0 ) KC-LP CIP∞ : [1+ ln Ξ” 1 π‘π‘šπ‘–π‘› +4 ln Ξ” 1 π‘π‘šπ‘–π‘› ] Basic-LP CIP: output 𝑧≀ 1+πœ– 𝑑 cost approx 1+4 ln Ξ” 1 πœ– π‘π‘šπ‘–π‘› +5 ln Ξ” 1 π‘π‘šπ‘–π‘› via Basic-LP ln Ξ” 0 + ln ln Ξ” 0 +𝑂(1) [ ln Ξ” 1 π‘π‘šπ‘–π‘› +ln ln Ξ” 1 π‘π‘šπ‘–π‘› +O(1)] ln Ξ” 1 π‘π‘šπ‘–π‘› +ln ln Ξ” 1 π‘π‘šπ‘–π‘› +𝑂( ln 1/πœ–) via KC-LP Row sparsity: (1+ Ξ“0) for CIP and (1 + Ξ“1) for CIP∞ : tight Focus of this talk: Ξ” 0 , Ξ” 1 are β‰₯ some fixed constant C

14 Round+Fix Algorithm [Srinivasan’01,Saket-Sviridenko’12,Gupta-Nagarajan’16] Solve LP relaxation: x fractional solution Pick parameter Ξ± β‰₯ 1 and randomly and independently set zj to 𝛼 π‘₯ 𝑗 or 𝛼 π‘₯ 𝑗 s.t 𝐸 𝑧 𝑗 =𝛼 π‘₯ 𝑗 For each unsatisfied constraint i (ie 𝐴𝑧 𝑖 < 𝑏 𝑖 ) do y(i) is solution to knapsack cover problem induced by constraint i π‘§β†π‘§βˆ¨ 𝑦 (𝑖) Output z

15 Round+Fix Algorithm for CIP
Solve KC-LP relaxation: x fractional solution Pick parameter Ξ± β‰₯ 1. If βŒˆπ›Ό π‘₯ 𝑗 > 𝑑 𝑗 ) set zj to dj Else randomly and independently set zj to 𝛼 π‘₯ 𝑗 or 𝛼 π‘₯ 𝑗 s.t 𝐸 𝑧 𝑗 = 𝛼 π‘₯ 𝑗 For each unsatisfied constraint i (ie 𝐴𝑧 𝑖 < 𝑏 𝑖 ) do y(i) is solution to knapsack cover problem induced by constraint i π‘§β†π‘§βˆ¨ 𝑦 (𝑖) Output z

16 Knapsack Cover CIP with m = 1 (single covering constraint)
min 𝑐π‘₯ 𝑠.𝑑 π‘Žπ‘₯β‰₯𝑏, π‘₯≀𝑑, π‘₯∈ 𝑍 + 𝑛 KC-LP integrality gap is 2 [Carr et al] Basic LP: given x, there is is integer solution z s.t and 𝑐⋅𝑧≀2 𝑐⋅π‘₯ and π‘§β‰€βŒˆ2 π‘₯βŒ‰. FPTAS via DP

17 High-level Analysis of Round+Fix
Output is feasible solution by construction Expected cost? pi : probability that i not covered 𝛼 𝑐⋅π‘₯+ 𝑖 𝑝 𝑖 (𝑐⋅ 𝑦 𝑖 )

18 Only tool: Chernoff Bound
X1, X2, …, Xn independent random variables in [0,1] 𝑋= 𝑗 𝑋 𝑗 π‘Žπ‘›π‘‘ 𝐸 𝑋 =πœ‡ Pr 𝑋< 1βˆ’π›Ώ πœ‡ ≀ 𝑒 βˆ’π›Ώ 1βˆ’π›Ώ 1βˆ’π›Ώ πœ‡ Pr 𝑋<1 ≀ exp 1 βˆ’πœ‡+ ln πœ‡ If X1, X2, …, Xn in [0,Ξ³] Pr 𝑋<1 ≀ exp 1 𝛾 (1 βˆ’πœ‡+ ln πœ‡ )

19 CIP∞: Ax β‰₯ 1, x β‰₯ 0 Round+Fix algorithm, choose 𝛼= ln Ξ” 0 + ln ln Ξ” 0 +𝑂(1) pi = Pr[ (Az)i < 1 ] ≀ exp(1 – Ξ± + ln Ξ±) ≀ 1/(2βˆ†0) Expected cost: 𝛼 𝑐⋅π‘₯+ 𝑖 𝑝 𝑖 (𝑐⋅ 𝑦 𝑖 ) 𝑖 𝑝 𝑖 (𝑐⋅ 𝑦 𝑖 ) ≀ 1 2Ξ” 0 𝑖 2 𝑗: 𝐴 𝑖,𝑗 >0 𝑐 𝑗 π‘₯ 𝑗 ≀ 𝑗 𝑐 𝑗 π‘₯ 𝑗 Hence (Ξ± + 1) LP-Cost

20 CIP: Ax β‰₯ 1, x ≀ d, x β‰₯ 0 Round+Fix algorithm, choose 𝛼= ln Ξ” 0 + ln ln Ξ” 0 +𝑂(1) Same analysis gives Ξ± + 1 approx. wrt KC-LP

21 CIP∞: Ax β‰₯ 1, x β‰₯ 0, βˆ†1 bound Round+Fix algorithm, choose 𝛼= ln Ξ” 1 + ln ln Ξ” 1 +𝑂(1) Claim: Expected cost is (Ξ± + O(1)) LP-Cost Proof a bit clever but still relies only on Chernoff bound

22 βˆ†1 bound: intuition 𝛼= ln Ξ” 1 + ln ln Ξ” 1 +𝑂(1) Understand pi which can be non-uniform 𝛼 𝑗 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯1⋅𝛼 Suppose Ai,j ≀ Ξ³ for all j then pi = Pr[ (Az)i < 1 ] ≀ exp((1 – Ξ± + ln Ξ±)/Ξ³) ≀ Ξ³/(2βˆ†1)

23 βˆ†1 bound: intuition Suppose Ai,j = Ξ³ or 0 for all j then pi = Pr[ (Az)i < 1 ] ≀ exp((1 – Ξ± + ln Ξ±)/Ξ³) ≀ Ξ³/(2βˆ†1) 𝑝 𝑖 𝑐⋅ 𝑦 𝑖 ≀ 𝛾 2Ξ” 1 2 𝑗: 𝐴 𝑖,𝑗 >0 𝑐 𝑗 π‘₯ 𝑗 = 1 2 Ξ” 1 𝑗: 𝐴 𝑖,𝑗 >0 𝑐 𝑗 𝑨 π’Š,𝒋 π‘₯ 𝑗

24 βˆ†1 bound: general case Constraint i: 𝑗 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯1 There exists ρi such that 𝑗: 𝐴 𝑖,𝑗 β‰₯ 𝜌 𝑖 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯ 1 2 and 𝑗: 𝐴 𝑖,𝑗 ≀ 𝜌 𝑖 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯ 1 2 Pr[ (Az)i < 1 ] ≀ exp((1 – Ξ±/2 + ln Ξ±/2)/ρi) ≀ O(ρi/βˆ†1)

25 βˆ†1 bound: general case 𝑗: 𝐴 𝑖,𝑗 β‰₯ 𝜌 𝑖 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯ 1 2 and 𝑗: 𝐴 𝑖,𝑗 ≀ 𝜌 𝑖 𝐴 𝑖,𝑗 π‘₯ 𝑗 β‰₯ 1 2 Pr[ (Az)i < 1 ] ≀ exp((1 – Ξ±/2 + ln Ξ±/2)/ρi) ≀ O(ρi/βˆ†1) Expected cost: 𝛼 𝑐⋅π‘₯+ 𝑖 𝑝 𝑖 (𝑐⋅ 𝑦 𝑖 ) 𝑖 𝑝 𝑖 (𝑐⋅ 𝑦 𝑖 ) ≀𝑂( 𝜌 𝑖 Ξ” 1 ) 𝑖 4 𝑗: 𝐴 𝑖,𝑗 β‰₯ 𝜌 𝑖 𝑐 𝑗 π‘₯ 𝑗 ≀𝑂 1 Ξ” 1 𝑖 𝑗 𝑐 𝑗 𝐴 𝑖,𝑗 π‘₯ 𝑗 ≀𝑂 1 𝑐⋅π‘₯ Hence expected cost is (Ξ± + O(1)) LP-Cost

26 Derandomization Algorithm is simple. Feasibility guaranteed, only cost is random. Analysis relies only on simple Chernoff bound Use method of conditional expectations via Chernoff bound derivation-formula as pessimistic estimator Easy and efficient deterministic algorithm

27 Conclusions Fast (near-linear) approximation scheme to solve KC-LP
Randomized rounding + fixing appears to be a universal algorithm for Set Cover and CIPs: for each scenario different parameter Ξ±. Algorithm: try β€œall” values of Ξ± and take the best. Oblivious to parameters and may work better in practice. Derandomization

28 Thank You!


Download ppt "On Approximating Covering Integer Programs"

Similar presentations


Ads by Google