Download presentation
Presentation is loading. Please wait.
1
Unit 1 Day 8 Inverse Functions
F-BF.4: Find an inverse function and use this relationship to sole problems using tables, graphs, and equations.
2
Recall: Definition of a function
In a function, each _______ can have only one ________ In other words, each ____ can only have one ____ Decide whether or not the relations below represent functions: input output x y YES or NO YES or NO YES or NO YES or NO YES or NO
3
Inverse Functions opposite โundoโ Square root ๐ฅ ๐ฅ ๐ฆ domain and range
Inverse functions are ________________ or functions that ________________each other Think of the function ๐ ๐ฅ = ๐ฅ 2 . How do you โundoโ squaring x? ______________________ ๐ฅ 2 and __________ are inverse functions In inverse functions, the __ and __ values are switched from the original function When x and y values switch places can you think of something else we have been learning about that might also switch? _____________________________________ When the x and y values switch, this results in a reflection over ____________ The inverse of the function f is labeled _______________. We read this as โf inverse.โ Square root ๐ฅ ๐ฅ ๐ฆ domain and range ๐ฆ=๐ฅ ๐ โ1 (๐ฅ)
4
f โ1 (x) For each table create a table that represents the inverse. Label the inverse correctly using function notation โ4 โ3 โ2 โ7 4 5 Does ๐(๐ฅ) represent a function? ____________ Does ๐ โ1 (๐ฅ) represent a function? __________ Find ๐ 0 : ______________________________________ What is ๐ โ1 โ3 ? _____________________________ What is ๐ โ1 4 ? _____________________________ yes yes โ7 โ2 5
5
h โ1 (x) For each table create a table that represents the inverse. Label the inverse correctly using function notation 9 โ3 1 โ1 1 1 yes Does โ(๐ฅ) represent a function? ____________ Does โ โ1 (๐ฅ) represent a function? __________ Find โ 0 : ___________________________________ What is โ โ1 9 ? _____________________________ What is โ โ1 0 ? _____________________________ no โ3
6
Find the y-value in ๐ โ1 in the table, then look for x
In the examples above, you were asked to evaluate the inverse function for a given input. Is there a pattern that you could use to evaluate the inverse of a function without creating an inverse table? __________________________________________________________________________________ If the point (โ5, 3) is a point on ๐(๐ฅ), what point would be on ๐ โ1 ๐ฅ ? _____________ If the point (8, 1) is a point on ๐(๐ฅ), what point would be on ๐ โ1 ๐ฅ ? _______________ Find the y-value in ๐ โ1 in the table, then look for x (3, โ5) (1, 8) Use the table of ๐(๐) below to answer the following questions: ๐ โ1 9 =__________ ๐ โ1 (โ2)= ________ โ2 5
7
The function f(x) is shown on the graph
The function f(x) is shown on the graph. Using the same approach, used with the tables, find the values requested: f โ1 7 = _______ f โ7 = _______ f โ1 0 = _______ f 3 =_______ f โ1 โ3 = _______ f โ1 โ5 = _______ 5 โ5 3 โ7
8
Function Function Function Function Function
Vertical Line Test To determine whether or not a graph represents a function we use the ______________________ If any vertical line touches the graph more than once, the graph is __________________ If any possible vertical line touches the graph only once, the graph is ________________ Determine whether or not the graphs below represent functions: Vertical line test not a function a function Function Function Function Function Function Not a Function Not a Function Not a Function Not a Function Not a Function
9
Inverse from Graphs To determine whether or not a functions inverse will also be a function use the ___________________ The same rules apply for an inverse function with the horizontal line test that apply for a function and the vertical line test If a function does not pass the horizontal line test, it will have an inverse on a _________________ All ______________ functions will have an inverse function with a restricted domain along the line of symmetry ๐ก๐จ๐ซ๐ข๐ณ๐จ๐ง๐ญ๐๐ฅ ๐ฅ๐ข๐ง๐ ๐ญ๐๐ฌ๐ญ ๐ซ๐๐ฌ๐ญ๐ซ๐ข๐๐ญ๐๐ ๐๐จ๐ฆ๐๐ข๐ง ๐ช๐ฎ๐๐๐ซ๐๐ญ๐ข๐
10
For each graph below, determine whether or not the inverse would represent a function. If an inverse does not exist, use vertical lines to create a domain where an inverse would exist. Function Function Function Function Not a Function Not a Function Not a Function Not a Function
11
Inverse Functions ๐ฅ๐ข๐ง๐๐๐ซ ๐ฌ๐ช๐ฎ๐๐ซ๐ ๐ซ๐จ๐จ๐ญ ๐๐ฎ๐๐ ๐ซ๐จ๐จ๐ญ
The inverse of a linear function is always a ____________ function The inverse of a quadratic function is always a ______________ function The inverse of a cubic function is always a _____________ function ๐ฅ๐ข๐ง๐๐๐ซ ๐ฌ๐ช๐ฎ๐๐ซ๐ ๐ซ๐จ๐จ๐ญ ๐๐ฎ๐๐ ๐ซ๐จ๐จ๐ญ
12
Finding the inverse from an equation:
Change the ____ to a ____ Switch the ____ and _____ Solve for _____ Use the notation ______ to represent your inverse ๐(๐ฅ) ๐ฆ ๐ฅ ๐ฆ ๐ฆ ๐ โ1 (๐ฅ)
13
(1) Find the inverse of ๐ ๐ฅ =4๐ฅโ7
๐ฆ=4๐ฅโ7 ๐ฅ=4๐ฆโ7 ๐ฅ+7= 4๐ฆ ๐ โ1 ๐ฅ = ๐ฅ+7 4
14
(2)Find the inverse of ๐ ๐ฅ =โ 1 4 ๐ฅ+8
๐ฆ=โ 1 4 ๐ฅ+8 ๐ฅ=โ 1 4 ๐ฆ+8 โ โ8 โ โ4( ) ๐ฅโ8 = โ 1 4 ๐ฆ ๐ โ1 ๐ฅ =โ4๐ฅ+32
15
(3)Find the inverse of ๐ ๐ฅ =8 ๐ฅ 2 โ5
๐ฆ=8 ๐ฅ 2 โ5 ๐ฅ=8 ๐ฆ 2 โ5 ๐ฅ+5= 8 ๐ฆ 2 ๐ฅ+5 8 = y 2 ๐ โ1 ๐ฅ =ยฑ ๐ฅ+5 8 ,๐ฅโฅโ5
16
(4)Find the inverse of ๐ ๐ฅ = ๐ฅ+1 5 , ๐ฅโฅโ1
๐ฆ= ๐ฅ+1 5 ๐ฅ = ๐ฆ+1 5 ( ) ๐ฆ+1 5๐ฅ= 25 ๐ฅ 2 = ๐ฆ+1 โ โ1 ๐ โ1 ๐ฅ =25 ๐ฅ 2 โ1
17
(5)Find the inverse of ๐ ๐ฅ = ๐ฅ โ4
๐ฆ= ๐ฅ โ4 ๐ฅ= ๐ฆ โ4 ๐ฅ+4 = ๐ฆ ๐ โ1 ๐ฅ = ๐ฅ+4 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.