Presentation is loading. Please wait.

Presentation is loading. Please wait.

Online Algorithms via Projections set cover, paging, k-server

Similar presentations


Presentation on theme: "Online Algorithms via Projections set cover, paging, k-server"β€” Presentation transcript:

1 Online Algorithms via Projections set cover, paging, k-server
Niv Buchbinder Tel-Aviv Anupam Gupta CMU Marco Molinaro PUC-Rio Seffi Naor Technion

2 K-Server problem Finite metric space (𝑉,𝑑) with |𝑉|=𝑛 points π‘˜= # of β€œservers” that algo controls Input: request sequence π‘Ÿ 1 , π‘Ÿ 2 , …, π‘Ÿ 𝑑 , … Output: on seeing π‘Ÿ 𝑑 , algo needs to have a server at π‘Ÿ 𝑑 Min: total distance moved by servers OPT = optimal cost/solution in hindsight Goal: online ALG such that 𝔼[π‘π‘œπ‘ π‘‘(𝐴𝐿𝐺)] ≀ 𝛼.π‘π‘œπ‘ π‘‘(𝑂𝑃𝑇) + 𝑐′

3 (very partial) history and results
Deterministic 2π‘˜βˆ’1 upper bound, π‘˜ lower bound [Koutsoupias Papadimitriou 95] Randomized Ξ©( log π‘˜ ) even when metric is a star [folklore 90s?] 𝑂(log π‘˜) for weighted stars [Bansal Buchbinder Naor 07] 𝑂( log 3 𝑛 log 2 β‘π‘˜) [Bansal Buchbinder Madry Naor 11] 𝑢( π₯𝐨𝐠 πŸ” π’Œ) [Bubeck Cohen Lee Lee Madry 18] [Lee 18] Rounding, loses 𝑢(𝟏) 𝑢( log 𝟐 π‘˜ ) fractional on HSTs If HSTs, then general metrics, loses 𝑢( log πŸ’ π‘˜ )

4 (very partial) history and results
Deterministic 2π‘˜βˆ’1 upper bound, π‘˜ lower bound [Koutsoupias Papadimitriou 95] Randomized Ξ©( log π‘˜ ) even when metric is a star [folklore 90s?] 𝑂(log π‘˜) for weighted stars [Bansal Buchbinder Naor 07] 𝑂( log 3 𝑛 log 2 β‘π‘˜) [Bansal Buchbinder Madry Naor 11] 𝑢( π₯𝐨𝐠 πŸ” π’Œ) [Bubeck Cohen Lee Lee Madry 18] 𝑢( log 𝟐 π‘˜ ) fractional on HSTs

5 𝑂( log 2 π‘˜ ) on HST Technique: Continuous time online mirror descent - Differential inclusion gives trajectory π‘₯ 𝑑 Can be discretized π‘₯ 𝑑 π‘₯ 𝑑+1 Hopefully some progress in role of regularization in online algo

6 Our result Our result: Very coarse discretization works!
≑ projection-based algorithm works Projection-based algorithms as a natural option for movement-based online problems? [Buchbinder Chen Naor 14] Thm: Discrete*, projection-based algo gives 𝑂( log 2 π‘˜ ) approximation for fractional k-server on HSTs π‘₯ 𝑑 π‘₯ 𝑑+1 π‘₯ 𝑑 π‘₯ 𝑑+1 Hopefully some progress in role of regularization in online algo

7 projection-based algorithm
β€œBase” polytope 𝐾 based on metric (HST) and π‘˜ At time t: polytope 𝐾 𝑑 of feasible states where both alg and opt need to be in (i.e. 𝐾 + some server at the requested position π‘Ÿ 𝑑 ) Distance is a Bregman divergence Use variants of KL divergence 𝑲 𝒕 𝑲 π‘₯ 𝑑 𝑲 𝒕+𝟏 Algorithm: π‘₯ 𝑑+1 ← arg min π‘₯∈ 𝐾 𝑑+1 distance(π‘₯, π‘₯ 𝑑 ) π‘₯ 𝑑+1

8 rest of the talk - Illustration on a simpler problem: Online Set Cover - Some words about generalization to k-server - Closing remarks

9 online set cover π‘₯ π‘‘βˆ’1 ∈ 𝐑 + 𝑛 At time t: π‘Ž 𝑑 , π‘₯ β‰₯1 for some π‘Ž 𝑑 ∈ 0,1 𝑛 Monotonically increase π‘₯ π‘‘βˆ’1 β†’ π‘₯ 𝑑 Satisfy all constraints until now Movement cost at time t: | π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 | 1 = 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 Min: total movement cost 𝒕 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 = 𝟏, π‘₯ 𝑇 𝒙 𝒕 𝒙 π’•βˆ’πŸ

10 the projection-based algorithm
Define the feasible states set 𝐾 𝑑 = all constraints up to time t = π‘₯β‰₯0 π‘Ž 𝑠 , π‘₯ β‰₯1 βˆ€π‘ β‰€π‘‘} (cannot add monotonicity π‘₯β‰₯ π‘₯ π‘‘βˆ’1 , OPT does not satisfy) 𝑲 𝒕

11 the projection-based algorithm
Define the feasible states set 𝐾 𝑑 = all constraints up to time t = π‘₯β‰₯0 π‘Ž 𝑠 , π‘₯ β‰₯1 βˆ€π‘ β‰€π‘‘} (cannot add monotonicity π‘₯β‰₯ π‘₯ π‘‘βˆ’1 , OPT does not satisfy) 𝑲 𝒕 Algorithm: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 unnormalized KL divergence

12 Guarantee of Proj-based algo
Obs: The algo is feasible: π‘₯ 𝑑 are monotonically increasing Thm: ALG ≀ log 𝑛 β‹…OPT+ 1 Not new [Alon et al. 03], [Buchbinder, Chen, Naor 14], ... Comparing our fractional solution π‘₯ 𝑑 to integral OPT 𝑦 𝑑

13 Analysis: cost Cost: 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Main property of divergence: Reverse Pythagorean inequality 𝐷(𝑦 π‘₯ β‰₯ 𝐷(𝑦| π‘₯ π‘π‘Ÿπ‘œπ‘— ) + 𝐷( π‘₯ π‘π‘Ÿπ‘œπ‘— |π‘₯) π‘₯ π‘π‘Ÿπ‘œπ‘— π‘₯ β‰₯𝟎 ⇒𝐷 𝑦 π‘₯ π‘π‘Ÿπ‘œπ‘— βˆ’π·(𝑦 π‘₯ ≀0 𝑦

14 Analysis: cost Cost: 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Main property of divergence: Reverse Pythagorean inequality π‘₯ 𝑑 π‘₯ π‘‘βˆ’1 𝐾 𝑑 ⇒𝐷 𝑦 𝑑 π‘₯ 𝑑 βˆ’π·( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 𝑦 𝑑

15 Analysis: cost Cost: 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Main property of divergence: Reverse Pythagorean inequality Ξ¦(𝑦 π‘₯ =𝐷 𝑦 π‘₯ + 𝟏,𝑦 βˆ’ 𝟏,π‘₯ π‘₯ 𝑑 π‘₯ π‘‘βˆ’1 𝐾 𝑑 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 ⇒𝐷 𝑦 𝑑 π‘₯ 𝑑 βˆ’π·( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 𝑦 𝑑

16 Analysis: cost Cost: 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Main property of divergence: Reverse Pythagorean inequality Ξ¦(𝑦 π‘₯ =𝐷 𝑦 π‘₯ + 𝟏,𝑦 βˆ’ 𝟏,π‘₯ π‘₯ π‘‘βˆ’1 π‘₯ 𝑑 𝑦 𝑑 𝐾 𝑑 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 ≀Φ( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 βˆ’Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 ALGs cost change in potential β‰ˆ OPTs cost ?

17 Analysis: cost 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0
Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Ξ¦(𝑦 π‘₯ =𝐷 𝑦 π‘₯ + 𝟏,𝑦 βˆ’ 𝟏,π‘₯ 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 ≀Φ( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 βˆ’Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 ⇒𝐷 𝑦 𝑑 π‘₯ 𝑑 βˆ’π·( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 β‰ˆ OPTs cost ? Lemma: RHS ≀ log 𝑛 βˆ™ OPTs cost Pf: If OPT increases 𝑦 𝑖 π‘‘βˆ’1 =0 β†’ 𝑦 𝑖 𝑑 =1 OPTs cost = +1 ΔΦ=1 log 1 π‘₯ 𝑖 π‘‘βˆ’1 βˆ’0 log 0 π‘₯ 𝑖 π‘‘βˆ’1 ≀ log 𝑛 (because π‘₯ 𝑖 π‘‘βˆ’1 β‰₯ π‘₯ 𝑖 0 β‰₯ 1 𝑛 )

18 Analysis: cost 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0
Algo: π‘₯ 0 = 1/n π‘₯ 𝑑 ← arg min π‘₯∈ 𝐾 𝑑 D(π‘₯| π‘₯ π‘‘βˆ’1 ) 𝐷(𝑝 π‘ž = 𝑖 𝑝 𝑖 log 𝑝 𝑖 π‘ž 𝑖 βˆ’ 𝑝 𝑖 + π‘ž 𝑖 Ξ¦(𝑦 π‘₯ =𝐷 𝑦 π‘₯ + 𝟏,𝑦 βˆ’ 𝟏,π‘₯ 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 𝟏, π‘₯ 𝑑 βˆ’ π‘₯ π‘‘βˆ’1 +Ξ¦( 𝑦 𝑑 π‘₯ 𝑑 βˆ’ Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 ≀Φ( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 βˆ’Ξ¦( 𝑦 π‘‘βˆ’1 π‘₯ π‘‘βˆ’1 ⇒𝐷 𝑦 𝑑 π‘₯ 𝑑 βˆ’π·( 𝑦 𝑑 π‘₯ π‘‘βˆ’1 ≀0 log 𝑛 βˆ™ OPTs cost Adding over all times t: ALGs total cost ≀ logβ‘π‘›βˆ™ OPTs total cost + Ξ¦( 𝑦 0 | π‘₯ 0 ) ≀ logβ‘π‘›βˆ™ OPTs total cost + 1

19 rest of the talk - Illustration on a simpler problem: Online Set Cover - Some words about generalization to k-server - Closing remarks

20 k-server polytope and distance
Use the non-trivial LP from Bubeck Cohen Lee Lee Madry 18 (~unary encoding of # servers + …) 𝐾 = { π‘₯ : π‘₯ 𝑒,𝑗 ∈[0,1] π‘₯ root, 𝑗 ≀ 𝟏 π‘—β‰€π‘˜ βˆ€ π‘—βˆˆπ‘› 𝑗≀|𝑆| π‘₯ 𝑝 𝑆 , 𝑗 β‰₯ 𝑣,β„“ βˆˆπ‘† π‘₯ 𝑣,β„“ } (actual polytope: β€œanti-server” polytope) 𝐾 𝑑 =𝐾∩ π‘₯ π‘Ÿ 𝑑 β‰₯ 1 Also use divergence from Bubeck Cohen Lee Lee Madry 18 𝐷(𝑝 π‘ž = βˆ‘ 𝑒 𝑀 𝑒 ( βˆ‘ 𝑗 𝑝 𝑒,𝑗 log 𝑝 𝑒,𝑗 π‘ž 𝑒,𝑗 βˆ’ 𝑝 𝑒,𝑗 + π‘ž 𝑒,𝑗 ) βˆ€ S with common parent

21 proof elements Very inspired in proof of Bubeck Cohen Lee Lee Madry 18
𝐾 𝑑 = { π‘₯ : π‘₯ 𝑒,𝑗 ∈[0,1] π‘₯ root, 𝑗 β‰₯ 𝟏 𝑗>π‘˜ βˆ€ π‘—βˆˆπ‘› 𝑗≀|𝑆| π‘₯ 𝑝 𝑆 , 𝑗 β‰₯ 𝑣,β„“ βˆˆπ‘† π‘₯ 𝑣,β„“ βˆ€ S with common parent π‘₯ π‘Ÿ 𝑑 , ≀ 𝛿 } Very inspired in proof of Bubeck Cohen Lee Lee Madry 18 Simplification and KKT Potential: D + linear terms Cost function not linear anymore (||βˆ™| ​ 1 -type but no monotonicity) Stronger version of Reverse Pythagorean ineq, relates to duals To avoid dependence on height, additional potential, delicate

22 closing remarks Discrete projection-based algorithms for k-server (and paging) 𝑂( log 2 π‘˜) -competitive for fractional k-server on HSTs Matches results of Bubeck et al. 18 Show tight 𝑂( log π‘˜) result k-server on HSTs, and on general graphs? Other problems? What are crucial properties of the LP? Right divergence?

23 Thank you!


Download ppt "Online Algorithms via Projections set cover, paging, k-server"

Similar presentations


Ads by Google