Download presentation
Presentation is loading. Please wait.
Published bySucianty Gunardi Modified over 6 years ago
1
A mechanism for coupled gain of structure and loss of function in amyotrophic lateral sclerosis
Dr. Eamonn F. Healy Professor of Chemistry St. Edward’s University Austin, Tx.
2
Structure and Function in SOD1-related Amyotrophic Lateral Sclerosis
Proof of Concept : desolvated h-bonds Gain of interaction (GOI) in SOD1 Oxidation-induced gain of structure in SOD1
3
Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl
N-lobe C-lobe
4
Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl
FEBS Lett , 583,
5
Acetylenic Inhibitors of ADAM10 and ADAM17: In silico analysis of potency and selectivity
loop J. Mol. Graph. Model, 2010, 29,
6
The effect of desolvation on nucleophilic halogenase activity
Computational and Theoretical Chemistry, 2011, 964,
7
r=14 Wrapping a backbone hydrogen bond CHn (n= 1,2,3) backbone
Carbonyl O Amide N Amide H a-carbon HB r Extent of wrapping: r r=14 desolvation spheres
8
Fernandez, A. et al. PNAS 2003;100:
How many residues (n) wrap a hydrogen bond? desolvation sphere radius: r=6Å 1 periphery centrality pathogeny ligand carriers complexes / signaling toxins / prions enzymes modular hubs aggregates <n> 2 1 2 1 Fernandez, A. et al. PNAS 2003;100: & 2003;100: 2
9
A Model for heat shock inhibition of fibril formation in ataxin-3
Complex (PDB code) Y d (10-3 Å-2) Yint dint (10-3 Å-2) Ataxin-3/aB-crystallin (this work) 28 1.39 7 5.20 HLA antigen A-2/b2-microglobulin (1i4f) 36 1.58 6 6.50 Ig-light chain dimer (1jvk) 26 1.78 8 6.33 sHsp complex aB-crystallin ataxin-3 Cell Biochem. Biophys. 2014, 69,
10
Structure and Function in SOD1-related Amyotrophic Lateral Sclerosis
Proof of Concept : desolvated h-bonds Gain of interaction (GOI) in SOD1 Oxidation-induced gain of structure in SOD1
11
Prudencio, M. Et et al. Hum. Mol. Gen. 2010;19:4774-4789
The aggregation of wt and fALS mutant SOD1 Prudencio, M. Et et al. Hum. Mol. Gen. 2010;19:
12
A Model for non-obligate oligomer formation in protein aggregation
SOD1 69 143 Biochem. Biophys. Res. Commun., 2015, 465 ,
13
The effect of superoxide dismutase (SOD1) electrostatic
loop dynamics on amyloid-like filament formation Pathological Physiological Euro. Biophys. J., 2016, 45,
14
Biochem. Biophys. Res. Commun., 2016, 478, 1634-1639.
A mechanism for propagated SOD1 misfolding from frustration analysis of a G85R mutant protein assembly Biochem. Biophys. Res. Commun., 2016, 478,
15
Frustration and enervation in SOD1
EL (A) Cys57-Cys146 (A + F) oligomer RMSF color (in Fig 4) unconstrained CysS SCys apo wtSOD1 obligate homodimer black constrained apo wtSOD1/mutant SOD1 non-obligate tetramer cyan Cys(SH)(HS)Cys apo+reduced wtSOD1/mutant SOD1 non-obligate tetramer green EL S ZBL S ZBL Chain A S Chain F S EL Plos ONE , 2017, 12 (5), e
16
In silico modeling of solvated near-native conformers as an aid to understanding the propagated misfolding of SOD1 Chain A: zinc binding loop Chain F: zinc binding loop RMSF(Å) RMSF(Å) Chain A: electrostatic loop Chain F: electrostatic loop RMSF(Å) RMSF(Å)
17
1.1 ns 1.1 ns 1.4 ns wt 2 ns wt 2 ns 1.2 ns S134 S134 D83 D124 D125
P74 G138 W W H80 T137 H80 E77 W W W G127 D76 G127 R79 W W W G72 T135 W W W T135 G72 E78 K70 W H71 K70 wt 2 ns G138 D124 L126 D125 N139 T137 D125 G138 N139 T137 W G127 K136 K136 L126 K128 W 1.2 ns W T135 S134 D124 E133 G129 P74 G73 S134 K128 W W 1.1 ns H71 W W E132 W G129 W G138 W E132 G130 N131 D76 W W W W N131 G130 K128 H80 W W K136 T135 G129
18
A prion mechanism for propagated SOD1 misfolding
19
Structure and Function in SOD1-related Amyotrophic Lateral Sclerosis
Proof of Concept : desolvated h-bonds Gain of interaction (GOI) in SOD1 Oxidation-induced gain of structure in SOD1
20
A model for coupled gain of structure and loss of function in amyotrophic lateral sclerosis
RRM2 190 261 TDP-43
21
Pelmenschikov & Siegbahn Inorganic chemistry, 2005; 44, 3311-3320
SOD1 Dismutase cycle Cu-His63=2.55 H DG=2.4 TS 2 H DG=-11.5 H O O O- O O. O DG#=17.6 DG#=-11.5 H + O2-. + H+ Cu II - H2O2 His deprotonation Cu II Cu oxidation Cu I -His61 H-His61 H-His61 Cu-Ne(His61)=2.55 TS 1 DG=7.8 DG#=12.6 DG=1.0 DG=0 -O O. DG=0 HO. H0- Cu II + O2-. + H+ . O O -O2 Cu I + H2O2 -His61 Cu II H Cu II H-His61 Cu II -His61 -His61 DG#=31.4 H-His61 Cu-Zn=6.1 Cu-His61=2.2 Cu-Ne(His61)=2.31 Cu-Zn=6.6 Cu-His61=3.1 - O2-./ H+ + H2O2 SOD1 Peroxidase cycle Pelmenschikov & Siegbahn Inorganic chemistry, 2005; 44,
22
End on binding of hydrogen peroxide
His61 His46 His118 His44
23
Fenton Chemistry H CuI-O CuI-O O H O
24
-His61 -His61 - -His61 -His61 SOD1 Peroxidase cycle Cu II Cu I Cu I
LUMO LUMO CO3-. H2O Cu II -His61 Homolytic Cleavage HOMO HOMO DE=-13.7 DG=+1.6 CO2- H O O CO2- H-His61 H H -0.47 H H -0.38 H -0.20 Cu I O O -0.29 O O -0.27 O O -0.36 H-His61 H-His61 H-His61 HO. Cu I Cu I Cu I H2O + H+ +CO2 Cu II -His61 Heterolytic Cleavage DE=-5.6 DG=+7 H H DE=-19.8 DG=-11.5 H - H H DE=-0.9 DG=+11.8 DE=-11.9 DG=-2.5 O O O- O O - H+ DE=-7.8 DG=-4.9 O O + H2O2 O H-His61 H-His61 H Cu I Cu I Cu II Cu II Cu II -His61 -His61 H-His61 H H DE=-1.4 DG=+11.3 O O H-His61 Cu I SOD1 Peroxidase cycle + HCO4- H + H2O2 O O. DG=0 Cu I Cu I - O2-. - H+ H-His61 H-His61
25
H69 H44 H69 K134 D122 N84 D122
26
Collaborators: Dr. Peter King ;
Acknowledgements Collaborators: Dr. Peter King ; Dr. Ariel Fernandez (Rice U) Dr. Neil Cashman (U British Columbia) Dr. Kevin Dalby (UT Austin) Students: Jonathan Sanders; Skylar Johnson; Alicia Jones; Moises Mejia; Mina Nakhla; Pablo Romano; Carley Little; Cassandra Petty; Tony Velez; Luis Cervantes; Analise Roth-Rodriguez Funding: National Institute of General Medical Services (1K12GM102745) National Science Foundation (DUE ) The Welch Foundation (BH-0018) W. M. Keck Foundation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.