Presentation is loading. Please wait.

Presentation is loading. Please wait.

On The Quantitative Hardness of the Closest Vector Problem

Similar presentations


Presentation on theme: "On The Quantitative Hardness of the Closest Vector Problem"โ€” Presentation transcript:

1 On The Quantitative Hardness of the Closest Vector Problem
Huck BennetT (Northwestern University) 68th Midwest Theory Day (4/12/2018) Based on Joint Work with: Alexander Golovnev (Columbia University and Yahoo Research) Noah Stephens-Davidowitz (Princeton University)

2 This talk Lattice-based cryptography Fine-grained complexity
Quantitative hardness of CVP

3 Lattices A lattice is the set of all integer combinations of some linearly independent vectors ๐ตโ‰”( ๐‘ 1 ,โ€ฆ, ๐‘ ๐‘› ). ๐ฟ ๐ต โ‰” ๐‘–=1 ๐‘› ๐‘Ž ๐‘– ๐‘ ๐‘– ๐‘Ž 1 , โ€ฆ, ๐‘Ž ๐‘› โˆˆโ„ค} is the lattice generated by basis ๐ต.

4 Lattices in Computer Science
Lattice-based cryptography: Conjectured to be secure against quantum attacks. Based on worst-case hardness of lattice problems. Encryption/decryption use simple operations. Allows for new applications. E.g., Fully-homomorphic encryption. Algorithmic applications of lattices: Integer programming. Cryptanalysis. Coding theory. Many more.

5 The Closest Vector Problem (CVP)
The โ„“ ๐‘ -norm of ๐‘ฅ โˆˆ โ„ d for ๐‘โˆˆ 1, โˆž : ๐‘ฅ ๐‘ โ‰” ๐‘ฅ 1 ๐‘ + ๐‘ฅ 2 ๐‘ +โ‹ฏ+ ๐‘ฅ ๐‘‘ ๐‘ 1/๐‘ . An instance of the Closest Vector Problem with respect to the โ„“ ๐‘ -norm (CVPP) is a triple (๐ต, ๐‘ก , ๐‘Ÿ): A basis matrix ๐ต=( ๐‘ 1 , โ€ฆ, ๐‘ ๐‘› )โˆˆ โ„ dร—๐‘› , A target vector ๐‘ก โˆˆ โ„ d , A distance threshold ๐‘Ÿ>0. Goal: Decide whether there exists ๐‘ฆ โˆˆ โ„ค ๐‘› such that โ€–๐ต ๐‘ฆ โˆ’ ๐‘ก โ€– p โ‰คr.

6 The Closest Vector Problem (CVP)
The โ„“ ๐‘ -norm of ๐‘ฅ โˆˆ โ„ d for ๐‘โˆˆ 1, โˆž : ๐‘ฅ ๐‘ โ‰” ๐‘ฅ 1 ๐‘ + ๐‘ฅ 2 ๐‘ +โ‹ฏ+ ๐‘ฅ ๐‘‘ ๐‘ 1/๐‘ . An instance of the Closest Vector Problem with respect to the โ„“ ๐‘ -norm (CVPP) is a triple (๐ต, ๐‘ก , ๐‘Ÿ): A basis matrix ๐ต=( ๐‘ 1 , โ€ฆ, ๐‘ ๐‘› )โˆˆ โ„ dร—๐‘› , A target vector ๐‘ก โˆˆ โ„ d , A distance threshold ๐‘Ÿ>0. Goal: Decide whether there exists ๐‘ฆ โˆˆ โ„ค ๐‘› such that โ€–๐ต ๐‘ฆ โˆ’ ๐‘ก โ€– p โ‰คr.

7 The Complexity of CVP A long line of work has studied the complexity of CVP. Security of lattice-based cryptography is based on the hardness of related, easier problems. Quantitative hardness of CVP is necessary for practical security. Important for picking key size. E.g., a 2 ๐‘›/20 -time algorithm for CVP would break some cryptosystems [ADPS16, BCD+16]. ๐‘› ๐‘‚(๐‘›) [Kan87] 4 ๐‘› [MV13] 2 ๐‘› [ADS15] Our work! 2 ๐‘› [BGS17] The complexity of CVP: a long line of work. Algorithms in green, hardness in red. Our bound has a caveat (doesnโ€™t apply to l_2). Our work is a necessary not sufficient condition for the security of practical lattice-based cryptography. ๐‘› ๐œ” 1 [vEB81]

8 A fine-grained reduction from ๐‘˜-SAT to CVP
Strong Exponential Time Hypothesis (SETH): For every ๐œ€>0, there exists ๐‘˜โˆˆ โ„ค + such that ๐‘˜-SAT has no 2 1โˆ’๐œ€ ๐‘› -time algorithm. โ€œBrute force 2 ๐‘› -time is optimal for large ๐‘˜.โ€ Goal: Reduce a ๐‘˜-SAT instance ฮฆ on ๐’ variables to a CVP๐‘ instance of rank ๐’ for every ๐‘˜. Would prove that there is no ๐‘› -time algorithm for CVP๐‘ƒ assuming SETH. Reduction idea: A 0-1 combination of basis vectors will correspond to an assignment to ฮฆ. Combinations corresponding to satisfying assignments will be closer to ๐‘ก .

9 A First Reduction: 2-SAT to CVP๐‘
๐‘› columns indexed by variables, ๐‘š rows indexed by clauses, Two non-zero entries per row. A First Reduction: 2-SAT to CVP๐‘ Map a 2-SAT formula ฮฆโ‰” ๐‘–=1 ๐‘š ๐ถ ๐‘– on variables ๐‘ฅ 1 , โ€ฆ, ๐‘ฅ ๐‘› to a CVP๐‘ instance. Output instance: ๐ตโ‰” ๐ต โ€ฒ 2๐›ผ ๐ผ ๐‘› , ๐‘ก โ‰” ๐‘ก โ€ฒ ๐›ผ 1 ๐‘› , ๐‘Ÿ. ๐ตโ€™ ๐‘–,๐‘— โ‰” 2& if ๐ถ ๐‘– contains ๐‘ฅ ๐‘— , โˆ’2& if ๐ถ ๐‘– contains ยฌ๐‘ฅ ๐‘— , 0& otherwise. ๐‘ก ๐‘– โ€ฒ โ‰”3 โˆ’ 2 (# of negative literals in ๐ถ ๐‘– ). ๐‘ฅ ๐‘ฅ ๐‘ฅ 3 โ‹ฏ ๐‘ฅ ๐‘› ๐‘ก โ‰” ๐ตโ‰” ๐ถ 1 ๐ถ 2 ๐ถ 3 โ‹ฎ ๐ถ ๐‘š ๐ตโ€ฒ ๐‘ก โ€ฒ 2๐›ผ ๐ผ ๐‘› ๐›ผ 1 ๐‘› Only need to consider 0-1 combinations of basis vectors.

10 A First Reduction: 2-SAT to CVP๐‘
MAX- ^ Example ฮฆ with: C 1 โ‰” ๐‘ฅ 1 โˆจ ๐‘ฅ 3 and ๐ถ 2 โ‰” ยฌ x 1 โˆจ ๐‘ฅ ๐‘› . Consider ๐‘ฆ โˆˆ 0, 1 ๐‘› with: ๐‘ฆ 1 โ‰”1, ๐‘ฆ 3 โ‰”0, ๐‘ฆ ๐‘› โ‰”0. Want to analyze the contribution of each clause to ๐ต ๐‘ฆ โˆ’ ๐‘ก ๐‘ ๐‘ : Each satisfied clause contributes 1. Each unsatisfied clause contributes 3 ๐‘ . ๐ต ๐‘ฆ โˆ’ ๐‘ก ๐‘ ๐‘ counts the number of clauses satisfied by ๐‘ฆ ! ๐‘ฅ ๐‘ฅ ๐‘ฅ 3 โ‹ฏ ๐‘ฅ ๐‘› ๐‘ก โ‰” ๐ตโ‰” ๐ถ 1 ๐ถ 2 ๐ถ 3 โ‹ฎ ๐ถ ๐‘š 2 โ‹ฏ 3 -2 1 ๐ตโ€ฒ ๐‘ก โ€ฒ 2๐›ผ ๐ผ ๐‘› ๐›ผ 1 ๐‘›

11 Extending to larger ๐‘˜: Isolating Parallelepipeds
At most two numbers can be equidistant from a given number. Idea: Many vectors can be equidistant to a given vector. A collection of vectors ๐‘‰=( ๐‘ฃ 1 , โ€ฆ, ๐‘ฃ ๐‘˜ ) and shift ๐‘ก โˆ— form a (๐‘,๐‘˜)-isolating parallelepiped if: โ€– ๐‘‰ ๐‘ฅ โˆ’ ๐‘ก โˆ— โ€‹ ๐‘ =1 for all ๐‘ฅ โˆˆ 0,1 ๐‘˜ โˆ– 0 , โ€– ๐‘ก โˆ— ๐‘ >1.

12 A Generalized Reduction: ๐‘˜-SAT to CVP๐‘
Reduction from 2-SAT: Map a 2-SAT formula ฮฆโ‰” ๐‘–=1 ๐‘š ๐ถ ๐‘– on variables ๐‘ฅ 1 , โ€ฆ, ๐‘ฅ ๐‘› to a CVP๐‘ instance. Output instance: ๐ตโ‰” ๐ต โ€ฒ 2๐›ผ ๐ผ ๐‘› , ๐‘ก โ‰” ๐‘ก โ€ฒ ๐›ผ 1 ๐‘› , ๐‘Ÿ. ๐ตโ€™ ๐‘–,๐‘— โ‰” 2& if ๐ถ ๐‘– contains ๐‘ฅ ๐‘— , โˆ’2& if ๐ถ ๐‘– contains ยฌ๐‘ฅ ๐‘— , 0& otherwise. ๐‘ก ๐‘– โ‰”3 โˆ’ 2 (# of negative literals in ๐ถ ๐‘– ). Reduction from ๐’Œ-SAT: Assume a (๐‘, ๐‘˜)-isolating parallelepiped exists. Formed by some ๐‘‰= ๐‘ฃ 1 , โ€ฆ, ๐‘ฃ ๐‘˜ , ๐‘ก โˆ— . Map a ๐‘˜-SAT formula ฮฆโ‰” ๐‘–=1 ๐‘š ๐ถ ๐‘– on variables ๐‘ฅ 1 , โ€ฆ, ๐‘ฅ ๐‘› to a CVP๐‘ instance. Output instance: ๐ตโ‰” ๐ต โ€ฒ 2๐›ผ ๐ผ ๐‘› , ๐‘ก , ๐‘Ÿ. ๐ตโ€™ ๐‘–,๐‘— โ‰” ๐‘ฃ ๐‘  & if ๐‘ฅ ๐‘— is the ๐‘ th literal in ๐ถ ๐‘– , โˆ’ ๐‘ฃ ๐‘  & if ยฌ๐‘ฅ ๐‘— is the ๐‘ th literal in ๐ถ ๐‘– , 0& otherwise. ๐‘ก ๐‘– โ‰” ๐‘ก โˆ— โˆ’ ๐‘  ๐‘ฃ ๐‘  , summing over indices s of negative literals in ๐ถ ๐‘– . Warning: Abuse of notation. Each ๐‘ฃ ๐‘  is a vector. Now each ๐ตโ€™ ๐‘–,๐‘— and ๐‘ก ๐‘– denotes a block.

13 Main Result Theorem 1: If (๐‘, ๐‘˜)-isolating parallelepipeds exist for some ๐‘ and every ๐‘˜, then we can reduce ๐‘˜-SAT instances ฮฆ on ๐’ variables to CVP๐‘ instances of rank ๐’ for every ๐‘˜. But when do isolating parallelepipeds even exist? Theorem 2: For every odd integer ๐‘โˆˆ 1, โˆž and every ๐‘˜โˆˆ โ„ค + there exists a computable (๐‘, ๐‘˜)-isolating parallelepiped. Corollary: For every odd integer ๐‘โˆˆ 1, โˆž and for every constant ๐œ€>0, there is no โˆ’๐œ€ ๐‘› -time algorithm for CVP๐‘ instances on lattices of rank ๐‘› assuming SETH. Our approach extends to almost every ๐‘โˆˆ 1, โˆž and to ๐‘=โˆž. There is a 2 ๐‘›+๐‘œ(๐‘›) -time algorithm for the important Euclidean case, CVP2 [ADS15]. Our approach (provably) does not extend to even integers. Unfortunately 2 is as an even integer.

14 Conclusion and Open Questions
Our results: Main result: There is no ๐‘› -time algorithm for CVPP assuming SETH for almost every ๐‘โˆˆ[1, โˆž]. Including odd integers, excluding even integers ๐‘. Hardness of approximation from (randomized) Gap-ETH for CVP๐‘ for all ๐‘. Other quantitative hardness results for CVP๐‘, CVPP๐‘, and SVPโˆž. Open questions: SETH-hardness of CVP2. Quantitative hardness of the Shortest Vector Problem (SVP). Addressed in recent work of Aggarwal and Stephens-Davidowitz (STOC 2018). Improved quantitative hardness of approximation.

15 Thank you!

16 Constructing isolating parallelepipeds
A sketch of the idea for constructing ๐‘, ๐‘˜ - isolating parallelepipeds: Let ๐‘‰โˆˆ โ„ค 2 k ร—๐‘˜ have a row for each element in โˆ’1, 1 ๐‘˜ . Set all entries of ๐‘ก โˆ— to ๐‘ก โˆ— . Scale rows of ๐‘‰ of Hamming weight ๐‘– by ๐›ผ ๐‘– โ‰ฅ0. Also scale corresponding entries of ๐‘ก โˆ— . ๐‘‰โ‰” โˆ’1 โˆ’1 โˆ’1 โˆ’1 โˆ’1 1 โˆ’1 1 โˆ’1 1 โˆ’1 โˆ’1 โˆ’ โˆ’1 โˆ’ โˆ’ , ๐‘ก โˆ— โ‰” ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— ๐‘ก โˆ— .

17 Constructing isolating parallelepipeds
A sketch of ๐‘, ๐‘˜ -isolating parallelepipeds construction: Let ๐‘‰โˆˆ โ„ค 2 k ร—๐‘˜ have a row for each element in โˆ’1, 1 ๐‘˜ . Set all entries of ๐‘ก โˆ— to ๐‘ก โˆ— . Scale rows of ๐‘‰ of Hamming weight ๐‘– by ๐›ผ ๐‘– โ‰ฅ0. Also scale corresponding entries of ๐‘ก โˆ— . Then ๐‘‰ ๐‘ฅ โˆ’ ๐‘ก ๐‘ only depends on the Hamming weight of ๐‘ฅ . Use ideas from combinatorics and analysis to show that ๐‘Ž 0 , ๐‘Ž 1 ,โ€ฆ, ๐‘Ž ๐‘˜ โ‰ฅ0 and ๐‘ก โˆ— exist so that ๐‘‰, ๐‘ก โˆ— satisfy ๐‘, ๐‘˜ -isolating parallelepiped conditions. ๐‘‰โ‰” โˆ’ ๐›ผ 0 โˆ’ ๐›ผ 0 โˆ’ ๐›ผ 0 โˆ’ ๐›ผ 1 โˆ’ ๐›ผ 1 ๐›ผ 1 โˆ’ ๐›ผ 1 ๐›ผ 1 โˆ’ ๐›ผ 1 ๐›ผ 1 โˆ’ ๐›ผ 1 โˆ’ ๐›ผ 1 โˆ’ ๐›ผ 2 ๐›ผ 2 ๐›ผ 2 โˆ’ ๐›ผ 2 โˆ’ ๐›ผ 2 ๐›ผ 2 ๐›ผ 2 ๐›ผ 2 โˆ’ ๐›ผ 2 ๐›ผ 3 ๐›ผ 3 ๐›ผ 3 , ๐‘ก โˆ— โ‰” ๐›ผ 0 โ‹…๐‘ก โˆ— ๐›ผ 1 โ‹…๐‘ก โˆ— ๐›ผ 1 โ‹…๐‘ก โˆ— ๐›ผ 1 โ‹…๐‘ก โˆ— ๐›ผ 2 โ‹…๐‘ก โˆ— ๐›ผ 2 โ‹…๐‘ก โˆ— ๐›ผ 2 โ‹…๐‘ก โˆ— ๐›ผ 3 โ‹…๐‘ก โˆ— .

18 The Closest Vector Problem (CVP)
The โ„“ ๐‘ -norm of ๐‘ฅ โˆˆ โ„ d for ๐‘โˆˆ 1, โˆž : ๐‘ฅ ๐‘ โ‰” ๐‘ฅ 1 ๐‘ + ๐‘ฅ 2 ๐‘ +โ‹ฏ+ ๐‘ฅ ๐‘‘ ๐‘ 1/๐‘ . An instance of the Closest Vector Problem with respect to the โ„“ ๐‘ -norm (CVPP) is a triple (๐ต, ๐‘ก , ๐‘Ÿ): A basis matrix ๐ต=( ๐‘ 1 , โ€ฆ, ๐‘ ๐‘› )โˆˆ โ„ dร—๐‘› , A target vector ๐‘ก โˆˆ โ„ d , A distance threshold ๐‘Ÿ>0. Goal: Decide whether there exists ๐‘ฆ โˆˆ โ„ค ๐‘› such that โ€–๐ต ๐‘ฆ โˆ’ ๐‘ก โ€– p โ‰คr.

19 The Closest Vector Problem (CVP)
The โ„“ ๐‘ -norm of ๐‘ฅ โˆˆ โ„ d for ๐‘โˆˆ 1, โˆž : ๐‘ฅ ๐‘ โ‰” ๐‘ฅ 1 ๐‘ + ๐‘ฅ 2 ๐‘ +โ‹ฏ+ ๐‘ฅ ๐‘‘ ๐‘ 1/๐‘ . An instance of the Closest Vector Problem with respect to the โ„“ ๐‘ -norm (CVPP) is a triple (๐ต, ๐‘ก , ๐‘Ÿ): A basis matrix ๐ต=( ๐‘ 1 , โ€ฆ, ๐‘ ๐‘› )โˆˆ โ„ dร—๐‘› , A target vector ๐‘ก โˆˆ โ„ d , A distance threshold ๐‘Ÿ>0. Goal: Decide whether there exists ๐‘ฆ โˆˆ โ„ค ๐‘› such that โ€–๐ต ๐‘ฆ โˆ’ ๐‘ก โ€– p โ‰คr.


Download ppt "On The Quantitative Hardness of the Closest Vector Problem"

Similar presentations


Ads by Google