Download presentation
Presentation is loading. Please wait.
Published byAdem Uzunlar Modified over 5 years ago
1
On The Quantitative Hardness of the Closest Vector Problem
Huck BennetT (Northwestern University) 68th Midwest Theory Day (4/12/2018) Based on Joint Work with: Alexander Golovnev (Columbia University and Yahoo Research) Noah Stephens-Davidowitz (Princeton University)
2
This talk Lattice-based cryptography Fine-grained complexity
Quantitative hardness of CVP
3
Lattices A lattice is the set of all integer combinations of some linearly independent vectors ๐ตโ( ๐ 1 ,โฆ, ๐ ๐ ). ๐ฟ ๐ต โ ๐=1 ๐ ๐ ๐ ๐ ๐ ๐ 1 , โฆ, ๐ ๐ โโค} is the lattice generated by basis ๐ต.
4
Lattices in Computer Science
Lattice-based cryptography: Conjectured to be secure against quantum attacks. Based on worst-case hardness of lattice problems. Encryption/decryption use simple operations. Allows for new applications. E.g., Fully-homomorphic encryption. Algorithmic applications of lattices: Integer programming. Cryptanalysis. Coding theory. Many more.
5
The Closest Vector Problem (CVP)
The โ ๐ -norm of ๐ฅ โ โ d for ๐โ 1, โ : ๐ฅ ๐ โ ๐ฅ 1 ๐ + ๐ฅ 2 ๐ +โฏ+ ๐ฅ ๐ ๐ 1/๐ . An instance of the Closest Vector Problem with respect to the โ ๐ -norm (CVPP) is a triple (๐ต, ๐ก , ๐): A basis matrix ๐ต=( ๐ 1 , โฆ, ๐ ๐ )โ โ dร๐ , A target vector ๐ก โ โ d , A distance threshold ๐>0. Goal: Decide whether there exists ๐ฆ โ โค ๐ such that โ๐ต ๐ฆ โ ๐ก โ p โคr.
6
The Closest Vector Problem (CVP)
The โ ๐ -norm of ๐ฅ โ โ d for ๐โ 1, โ : ๐ฅ ๐ โ ๐ฅ 1 ๐ + ๐ฅ 2 ๐ +โฏ+ ๐ฅ ๐ ๐ 1/๐ . An instance of the Closest Vector Problem with respect to the โ ๐ -norm (CVPP) is a triple (๐ต, ๐ก , ๐): A basis matrix ๐ต=( ๐ 1 , โฆ, ๐ ๐ )โ โ dร๐ , A target vector ๐ก โ โ d , A distance threshold ๐>0. Goal: Decide whether there exists ๐ฆ โ โค ๐ such that โ๐ต ๐ฆ โ ๐ก โ p โคr.
7
The Complexity of CVP A long line of work has studied the complexity of CVP. Security of lattice-based cryptography is based on the hardness of related, easier problems. Quantitative hardness of CVP is necessary for practical security. Important for picking key size. E.g., a 2 ๐/20 -time algorithm for CVP would break some cryptosystems [ADPS16, BCD+16]. ๐ ๐(๐) [Kan87] 4 ๐ [MV13] 2 ๐ [ADS15] Our work! 2 ๐ [BGS17] The complexity of CVP: a long line of work. Algorithms in green, hardness in red. Our bound has a caveat (doesnโt apply to l_2). Our work is a necessary not sufficient condition for the security of practical lattice-based cryptography. ๐ ๐ 1 [vEB81]
8
A fine-grained reduction from ๐-SAT to CVP
Strong Exponential Time Hypothesis (SETH): For every ๐>0, there exists ๐โ โค + such that ๐-SAT has no 2 1โ๐ ๐ -time algorithm. โBrute force 2 ๐ -time is optimal for large ๐.โ Goal: Reduce a ๐-SAT instance ฮฆ on ๐ variables to a CVP๐ instance of rank ๐ for every ๐. Would prove that there is no ๐ -time algorithm for CVP๐ assuming SETH. Reduction idea: A 0-1 combination of basis vectors will correspond to an assignment to ฮฆ. Combinations corresponding to satisfying assignments will be closer to ๐ก .
9
A First Reduction: 2-SAT to CVP๐
๐ columns indexed by variables, ๐ rows indexed by clauses, Two non-zero entries per row. A First Reduction: 2-SAT to CVP๐ Map a 2-SAT formula ฮฆโ ๐=1 ๐ ๐ถ ๐ on variables ๐ฅ 1 , โฆ, ๐ฅ ๐ to a CVP๐ instance. Output instance: ๐ตโ ๐ต โฒ 2๐ผ ๐ผ ๐ , ๐ก โ ๐ก โฒ ๐ผ 1 ๐ , ๐. ๐ตโ ๐,๐ โ 2& if ๐ถ ๐ contains ๐ฅ ๐ , โ2& if ๐ถ ๐ contains ยฌ๐ฅ ๐ , 0& otherwise. ๐ก ๐ โฒ โ3 โ 2 (# of negative literals in ๐ถ ๐ ). ๐ฅ ๐ฅ ๐ฅ 3 โฏ ๐ฅ ๐ ๐ก โ ๐ตโ ๐ถ 1 ๐ถ 2 ๐ถ 3 โฎ ๐ถ ๐ ๐ตโฒ ๐ก โฒ 2๐ผ ๐ผ ๐ ๐ผ 1 ๐ Only need to consider 0-1 combinations of basis vectors.
10
A First Reduction: 2-SAT to CVP๐
MAX- ^ Example ฮฆ with: C 1 โ ๐ฅ 1 โจ ๐ฅ 3 and ๐ถ 2 โ ยฌ x 1 โจ ๐ฅ ๐ . Consider ๐ฆ โ 0, 1 ๐ with: ๐ฆ 1 โ1, ๐ฆ 3 โ0, ๐ฆ ๐ โ0. Want to analyze the contribution of each clause to ๐ต ๐ฆ โ ๐ก ๐ ๐ : Each satisfied clause contributes 1. Each unsatisfied clause contributes 3 ๐ . ๐ต ๐ฆ โ ๐ก ๐ ๐ counts the number of clauses satisfied by ๐ฆ ! ๐ฅ ๐ฅ ๐ฅ 3 โฏ ๐ฅ ๐ ๐ก โ ๐ตโ ๐ถ 1 ๐ถ 2 ๐ถ 3 โฎ ๐ถ ๐ 2 โฏ 3 -2 1 ๐ตโฒ ๐ก โฒ 2๐ผ ๐ผ ๐ ๐ผ 1 ๐
11
Extending to larger ๐: Isolating Parallelepipeds
At most two numbers can be equidistant from a given number. Idea: Many vectors can be equidistant to a given vector. A collection of vectors ๐=( ๐ฃ 1 , โฆ, ๐ฃ ๐ ) and shift ๐ก โ form a (๐,๐)-isolating parallelepiped if: โ ๐ ๐ฅ โ ๐ก โ โ ๐ =1 for all ๐ฅ โ 0,1 ๐ โ 0 , โ ๐ก โ ๐ >1.
12
A Generalized Reduction: ๐-SAT to CVP๐
Reduction from 2-SAT: Map a 2-SAT formula ฮฆโ ๐=1 ๐ ๐ถ ๐ on variables ๐ฅ 1 , โฆ, ๐ฅ ๐ to a CVP๐ instance. Output instance: ๐ตโ ๐ต โฒ 2๐ผ ๐ผ ๐ , ๐ก โ ๐ก โฒ ๐ผ 1 ๐ , ๐. ๐ตโ ๐,๐ โ 2& if ๐ถ ๐ contains ๐ฅ ๐ , โ2& if ๐ถ ๐ contains ยฌ๐ฅ ๐ , 0& otherwise. ๐ก ๐ โ3 โ 2 (# of negative literals in ๐ถ ๐ ). Reduction from ๐-SAT: Assume a (๐, ๐)-isolating parallelepiped exists. Formed by some ๐= ๐ฃ 1 , โฆ, ๐ฃ ๐ , ๐ก โ . Map a ๐-SAT formula ฮฆโ ๐=1 ๐ ๐ถ ๐ on variables ๐ฅ 1 , โฆ, ๐ฅ ๐ to a CVP๐ instance. Output instance: ๐ตโ ๐ต โฒ 2๐ผ ๐ผ ๐ , ๐ก , ๐. ๐ตโ ๐,๐ โ ๐ฃ ๐ & if ๐ฅ ๐ is the ๐ th literal in ๐ถ ๐ , โ ๐ฃ ๐ & if ยฌ๐ฅ ๐ is the ๐ th literal in ๐ถ ๐ , 0& otherwise. ๐ก ๐ โ ๐ก โ โ ๐ ๐ฃ ๐ , summing over indices s of negative literals in ๐ถ ๐ . Warning: Abuse of notation. Each ๐ฃ ๐ is a vector. Now each ๐ตโ ๐,๐ and ๐ก ๐ denotes a block.
13
Main Result Theorem 1: If (๐, ๐)-isolating parallelepipeds exist for some ๐ and every ๐, then we can reduce ๐-SAT instances ฮฆ on ๐ variables to CVP๐ instances of rank ๐ for every ๐. But when do isolating parallelepipeds even exist? Theorem 2: For every odd integer ๐โ 1, โ and every ๐โ โค + there exists a computable (๐, ๐)-isolating parallelepiped. Corollary: For every odd integer ๐โ 1, โ and for every constant ๐>0, there is no โ๐ ๐ -time algorithm for CVP๐ instances on lattices of rank ๐ assuming SETH. Our approach extends to almost every ๐โ 1, โ and to ๐=โ. There is a 2 ๐+๐(๐) -time algorithm for the important Euclidean case, CVP2 [ADS15]. Our approach (provably) does not extend to even integers. Unfortunately 2 is as an even integer.
14
Conclusion and Open Questions
Our results: Main result: There is no ๐ -time algorithm for CVPP assuming SETH for almost every ๐โ[1, โ]. Including odd integers, excluding even integers ๐. Hardness of approximation from (randomized) Gap-ETH for CVP๐ for all ๐. Other quantitative hardness results for CVP๐, CVPP๐, and SVPโ. Open questions: SETH-hardness of CVP2. Quantitative hardness of the Shortest Vector Problem (SVP). Addressed in recent work of Aggarwal and Stephens-Davidowitz (STOC 2018). Improved quantitative hardness of approximation.
15
Thank you!
16
Constructing isolating parallelepipeds
A sketch of the idea for constructing ๐, ๐ - isolating parallelepipeds: Let ๐โ โค 2 k ร๐ have a row for each element in โ1, 1 ๐ . Set all entries of ๐ก โ to ๐ก โ . Scale rows of ๐ of Hamming weight ๐ by ๐ผ ๐ โฅ0. Also scale corresponding entries of ๐ก โ . ๐โ โ1 โ1 โ1 โ1 โ1 1 โ1 1 โ1 1 โ1 โ1 โ โ1 โ โ , ๐ก โ โ ๐ก โ ๐ก โ ๐ก โ ๐ก โ ๐ก โ ๐ก โ ๐ก โ ๐ก โ .
17
Constructing isolating parallelepipeds
A sketch of ๐, ๐ -isolating parallelepipeds construction: Let ๐โ โค 2 k ร๐ have a row for each element in โ1, 1 ๐ . Set all entries of ๐ก โ to ๐ก โ . Scale rows of ๐ of Hamming weight ๐ by ๐ผ ๐ โฅ0. Also scale corresponding entries of ๐ก โ . Then ๐ ๐ฅ โ ๐ก ๐ only depends on the Hamming weight of ๐ฅ . Use ideas from combinatorics and analysis to show that ๐ 0 , ๐ 1 ,โฆ, ๐ ๐ โฅ0 and ๐ก โ exist so that ๐, ๐ก โ satisfy ๐, ๐ -isolating parallelepiped conditions. ๐โ โ ๐ผ 0 โ ๐ผ 0 โ ๐ผ 0 โ ๐ผ 1 โ ๐ผ 1 ๐ผ 1 โ ๐ผ 1 ๐ผ 1 โ ๐ผ 1 ๐ผ 1 โ ๐ผ 1 โ ๐ผ 1 โ ๐ผ 2 ๐ผ 2 ๐ผ 2 โ ๐ผ 2 โ ๐ผ 2 ๐ผ 2 ๐ผ 2 ๐ผ 2 โ ๐ผ 2 ๐ผ 3 ๐ผ 3 ๐ผ 3 , ๐ก โ โ ๐ผ 0 โ
๐ก โ ๐ผ 1 โ
๐ก โ ๐ผ 1 โ
๐ก โ ๐ผ 1 โ
๐ก โ ๐ผ 2 โ
๐ก โ ๐ผ 2 โ
๐ก โ ๐ผ 2 โ
๐ก โ ๐ผ 3 โ
๐ก โ .
18
The Closest Vector Problem (CVP)
The โ ๐ -norm of ๐ฅ โ โ d for ๐โ 1, โ : ๐ฅ ๐ โ ๐ฅ 1 ๐ + ๐ฅ 2 ๐ +โฏ+ ๐ฅ ๐ ๐ 1/๐ . An instance of the Closest Vector Problem with respect to the โ ๐ -norm (CVPP) is a triple (๐ต, ๐ก , ๐): A basis matrix ๐ต=( ๐ 1 , โฆ, ๐ ๐ )โ โ dร๐ , A target vector ๐ก โ โ d , A distance threshold ๐>0. Goal: Decide whether there exists ๐ฆ โ โค ๐ such that โ๐ต ๐ฆ โ ๐ก โ p โคr.
19
The Closest Vector Problem (CVP)
The โ ๐ -norm of ๐ฅ โ โ d for ๐โ 1, โ : ๐ฅ ๐ โ ๐ฅ 1 ๐ + ๐ฅ 2 ๐ +โฏ+ ๐ฅ ๐ ๐ 1/๐ . An instance of the Closest Vector Problem with respect to the โ ๐ -norm (CVPP) is a triple (๐ต, ๐ก , ๐): A basis matrix ๐ต=( ๐ 1 , โฆ, ๐ ๐ )โ โ dร๐ , A target vector ๐ก โ โ d , A distance threshold ๐>0. Goal: Decide whether there exists ๐ฆ โ โค ๐ such that โ๐ต ๐ฆ โ ๐ก โ p โคr.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.