Download presentation
Presentation is loading. Please wait.
1
Methods in calculus
2
FM Methods in Calculus: mean value of a function
KUS objectives BAT evaluate the mean value of a function using integration Starter: find đ 3đĽ+1 đđĽ = 1 3 đ 3đĽ+1 +đś 4đĽ đ đĽ 2 đđĽ =2 đ đĽ 2 +đś 1 5đĽ+3 đđĽ = 1 5 đđ 5đĽ+3 +đś
3
Notes đ đŚ đĽ đŚ=đ(đĽ) đ đ đâđ đ đ = 1 đâđ đ đ đ(đĽ) đđĽ đ´đđđ= đ đ đ(đĽ) đđĽ
You find the mean average of discrete numbers by adding them and dividing by the number of values To find the mean value of a function in interval [đ, đ] we represent their sum by integrating the function between a and b, and represent the number of values as the interval đâđ In the diagram the area of the rectangle is (đâđ) đ but this equals the area under the curve. So (đâđ) đ = đ đ đ(đĽ) đđĽ đ = 1 đâđ đ đ đ(đĽ) đđĽ
4
WB B1 Find the mean value of
đ) đ đĽ = đĽ over the interval [2, 6] = 1 6â đĽ â1/2 đđĽ = đĽ â1/2 đđĽ area = đĽ 1/2 Ă = â 8 = â 2
5
WB B2 part đ đĽ = 4 1+ đ đĽ a) Show that the mean value of f(x) over the interval ln 2 , ln 6 is 4 ln ln 3 Use (a) to find the mean value over the interval ln 2 , ln 6 of đ đĽ +4 Use geometric considerations to find the mean value of âđ(đĽ) over ln 2 , ln 6 = 1 ln 6 â ln 2 ln 2 ln đ đĽ â1 đđĽ = 4 ln ln 2 ln đ đĽ â1 đđĽ area = 4 ln đ˘ Ă 1 đ˘ đđ˘ Integration by substitution = 4 ln đ˘ â 1 1+đ˘ đđ˘ Partial fractions = 4 ln ln đ˘ â ln (đ˘+1) 6 2 = 4 ln ln 6 â ln 7 â ln 2 â ln = 4 ln ln QED
6
NOW DO EX 3B WB B2 part 2 đ đĽ = 4 1+ đ đĽ
a) Show that the mean value of f(x) over the interval ln 2 , ln 6 is 4 ln ln 3 Use (a) to find the mean value over the interval ln 2 , ln 6 of đ đĽ +4 Use geometric considerations to find the mean value of âđ(đĽ) over ln 2 , ln 6 b) Mean of đ đĽ +4 is mean of f(x) plus 4 every value has gone up 4 so the mean has gone up 4 = 4 ln ln You can check by going through the integration from the start! đ) âđ(đĽ) is a reflection in the x-axis of f(x) so the mean value over the interval will be the negative area = â 4 ln ln 3 NOW DO EX 3B
7
One thing to improve is â
KUS objectives BAT evaluate the mean value of a function using integration self-assess One thing learned is â One thing to improve is â
8
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.