Download presentation
Presentation is loading. Please wait.
Published byMonica Abigail Fletcher Modified over 5 years ago
1
Image Steganography and Reversible Data Embedding Techniques 影像偽裝與可逆式資訊隱藏技術
Advisor: Prof. Chin-Chen Chang (張真誠 教授) Student: Wei-Liang Tai (戴維良) Department of Computer Science and Information Engineering, National Chung Cheng University
2
Outline Part I: Image Steganography Part II: Reversible Data Embedding
covert (undetectable) communication slight modification Part II: Reversible Data Embedding lossless (reversibility) original image
3
Image Steganography Escape Alice Bob Warden
4
Steganography for VQ Compressed Images Using Hamming Codes and Declustering
5
Vector Quantization (VQ)
6
LSB Embedding Codebook Y of size m : Arrange Codebook : such that
are similar Cover compression codes : {3, 6, 5, 0} = {011, 110, 101, 000}2 Secret message bits : (0, 0, 1, 1) Stego compression codes : {010, 110, 101, 001}2 = {2, 6, 5, 1} Embedding efficiency =
7
Single-Error-Correcting Codes
Send 1101 1 1 1 1 Finally send
8
Single-Error-Correcting Codes (Cont.)
Receive 1 Binary (7, 4) Hamming Code
9
Single-Error-Correcting Codes (Cont.)
Receive w= s=HwT= Receive w= s=HwT= HwT ≠ 0, 1-error occurred Corrected x = w - el(HwT) = ( ) – ( ) = ( )
10
Proposed Method Apply binary (7, 4) Hamming Code
Codebook Y of size m : Arrange Codebook : such that are similar Two sub-codebooks: Apply binary (7, 4) Hamming Code 7 Cover compression codes : {3, 7, 4, 1, 2, 6, 4} 7-bit Cover vector: w=( ) 3-bit Message m=(011)
11
Embedding and Extraction
s=HwT= HxT = 0 HxT = m HxT = HwT – HwT + m HxT = HwT – (HwT – m) HxT = H(w - el(HwT - m)) x = w - el(HwT - m) HwT – m = (010)-(011) = (001) Stego vector x = w – el(001) =( )-( ) =( ) 7 Stego codes = {3, 7, 4, 1, 2, 6, 5} Extract : m = HxT=(011) Embedding efficiency =
12
q-ary Hamming Codes Apply 3-ary (4, 2) Hamming Code
Codebook q -1 … Y0 Y1 Yq -1 Similar Apply 3-ary (4, 2) Hamming Code 4 Cover vector: w=(1021) 2 Message m=(21)3 s=HwT= HwT – m = (02)-(21) = (11) Stego vector x = w – el(11) =(1021)-(0010) =(1011) Extract : m = HxT=(21) Embedding efficiency =
13
Analysis Use the q-ary Hamming codes to convey r q-ary symbols in
Embedding efficiency = > 2 = LSB embedding Use the q-ary Hamming codes by performing at most one embedding change. indices to convey r q-ary symbols in
14
VQ compressed image (PSNR = 31.26 dB)
Visual Quality VQ compressed image (PSNR = dB) LSB embedding (PSNR = dB) Proposed scheme (PSNR = dB)
15
Reversible Data Embedding
Marked image Authentication code Original cover image Cover image = authentic Extracted auth. code Auth. code
16
Reversible Data Hiding Based on Histogram Modification of Pixel Differences
17
Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp , Mar Original image peak point zero point 2 5 3 1 4 2 6 4 1 5 3 2 6 3 1 5 Marked image Messages:
18
Histogram Modification
Marked image 2 6 4 1 5 3 a=3 b=6 2 6 4 1 5 3 Extracted bits = extract 2 6 4 1 5 3 2 5 3 1 4 recover Original cover image
19
Proposed Method
20
Proposed Method Peak point P=1 Cover image 155 156 158 159 160 153 157
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 xi 155 156 158 159 160 157 153 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 di 155 Peak point P=1
21
Shift xi by 1 units: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 xi 155 156 158 159 160 157 153 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 di 155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yi 155 159 158 157 152
22
Let m be the secret data to be embedded m={0 ,1}.
P = 1, message to be embedded: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 xi 155 156 158 159 160 157 153 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 di 155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yi 155 156 154 159 158 160 157 152
23
Extraction and Recovery
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yi 155 156 154 159 158 160 157 152 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 xi 155 156 158 159 160 157 153 P=1, extracted message m=
24
Experimental Results In the worse case, all pixel values will be increased or decreased by 1 but the first pixel. That is, the mean squared error (MSE) is (N-1)/N . The lower bound of PSNR: Original Lena 48.32 dB embedded with bpp
25
Performance Comparison
26
Future Works Image Steganography Reversible Data Embedding
spatial domain, JPEG, JPEG2000, etc. combine other codes Reversible Data Embedding higher hiding capacity with lower distortion. transform domains such as wavelet
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.