Presentation is loading. Please wait.

Presentation is loading. Please wait.

Transversity in D_Y 4/5/2019 Transversity, Transversity-odd Distributions and Asymmetries in Drell-Yan Processes Gary R. Goldstein Tufts University Leonard.

Similar presentations


Presentation on theme: "Transversity in D_Y 4/5/2019 Transversity, Transversity-odd Distributions and Asymmetries in Drell-Yan Processes Gary R. Goldstein Tufts University Leonard."— Presentation transcript:

1 Transversity in D_Y 4/5/2019 Transversity, Transversity-odd Distributions and Asymmetries in Drell-Yan Processes Gary R. Goldstein Tufts University Leonard P. Gamberg Penn State-Berks Lehigh Valley College 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

2 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Abstract Drell-Yan unpolarized processes display large azimuthal asymmetries. One such asymmetry, cos(2), is directly related to the leading twist transversity distribution h1(x,kT). We use a model developed for semi-inclusive deep inelastic scattering that determines the “Sivers function” f1T (x,kT) to predict the Drell-Yan asymmetry  as a function of q2, qT and either x or xF or a new variable, . The resulting predictions include a non-leading twist contribution from spin-averaged distributions that measurably effect lower energy results. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

3 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Outline Transversity Short history Helicity flip, chirality, phases & k SIDIS Asymmetries: SSA & azimuthal Rescattering & leading twist contributions Drell-Yan Transversity-odd distribution functions N (& ) distributions cos2 asymmetry Conclusions 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

4 Transversity - some history
Transversity in D_Y 4/5/2019 Transversity - some history 2-body scattering amps - Exclusive hadronic fa,b;c,d(s,t) with spin projections a,b;c,d What spin frame leads to simplest description of theory or data? Amps to observables? helicity has easy relativistic covariance - theory states of S·p, e.g. |+1/2 , |-1/2 , etc. transversity: eigenstates of S·(p1p2) | 1/2 )T = {|+1/2 (i) |-1/2}/√2 for spin 1/2, etc. Especially for relating to single spin asymmetries - only S·n GRG & M.J.Moravcsik, Ann.Phys. 1976 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

5 Transversity & simplicity
Transversity in D_Y 4/5/2019 Transversity & simplicity states of {S·(p1p2)} or {S·(p1 p2)} are transversity normal to or parallel to scattering plane Spin 1: | 1)T = {|+1> 2 |0> + |-1>}/2 | 0)T = {|+1> - |-1>}/ 2 photon: | 1)T = {|+1> + |-1>}/2 linear polzn normal to plane | 0)T = {|+1> - |-1>}/2 linear polzn parallel to plane useful in on-shell photoproduction dynamics Transversity amps in NNNN have phase simplicity (many observables!) GRG & Moravcsik & Arash 1980’s 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

6 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Phases & SSA Single Spin Asymmetries (SSA) in 2-body Parity allows only <S·n> non-zero for any single spinning particle. Requires some helicity flip or chirality flip for m=0 quarks & phase. <S·n>f*ab,cd[·n]dd’fab,cd’  Im[f*ab,c+ fab,c-] for particle D’s SSA n requires some p2 transverse to p1 (at quark level? m=0 & PQCD - no SSA) Inclusive A+B->X+D: sum&∫ over all C particles & relate to A+B+anti-D forward elastic. GRG & J.F.Owens (76) n  p1 p2 p2 p1 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

7 Azimuthal asymmetries - kinematics
Transversity in D_Y 4/5/2019 Azimuthal asymmetries - kinematics Why similar to spin asymmetries? Need plane established (P1P2)  transverse P Need azimuthal angle relative to 1st plane, i.e. 2nd plane via fragmentation or decay or pair production How does orientation information get transferred from 1st plane to 2nd plane? Dynamical question. Polarized intermediate particles &/or plane dependent observables - leading twist (&kinematic mass/Q) or non-leading SIDIS & Drell-Yan involve off-shell photons - like massive vector particles with  (& longitudinal) polarization 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

8 SSA & AzAs dynamics: require loops & k
Transversity in D_Y 4/5/2019 SSA & AzAs dynamics: require loops & k <S·n> f*AB,CD[·n]DD’fAB,CD’ helicity basis or in transversity basis: {|fAB,C(+)|2 - |fAB,C(-)|2} Imaginary part or phase requires beyond tree level in field theory PQCD efforts to explain polarized hyperons via s-quark polzn What is tree level in soft physics &/or “effective” field theory? Mixing PQCD & soft physics Helicity or chirality flip requires a flipping interaction (m≠0,…) & non-zero transverse momentum of participants or k’s 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

9 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Brodsky, Hwang & Schmidt provided non-trivial model calculation Final state corrections to tree-level DIS-> f1T(x,p2) Sivers & SSA LG&GG: same FSI contribute to other SSA’s & f1T(x,p2) = + h1(x,p2) Boer-Mulders Need SIDIS or D-Y to make functions experimentally accessible in asymmetry or polarization Brodsky, Hwang, Schmidt PLB 2002 Collins PLB 2002; Ji & Yuan PLB 2002 Goldstein & Gamberg ICHEP 2002 Gamberg, Goldstein, Oganessyan PRD 2003 &hep-ph 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

10 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 h1 h1(x,p2) is “Transversity-odd” distribution -(Boer-Mulders) probability of finding quark with non-zero transversity in unpolarized hadron (it is P-even) Vanishes at tree level in T-conserving models, as in spectator diquark model e.g. N quark+diquark where q is struck quark (like ordinary decay amps - final state interactions are essential - no T violation) Simple model is starting point for getting at properties to expect & observable consequences 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

11 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 SIDIS kinematics In spectator model yellow inclusive blob becomes diquark - scalar for simplicity (ud flavor) leaving u-quark being struck by q 1+ diquarks include uu (& dd) allowing for d-quark struck Note: diquark actually has structure also alternate method *+Nq+diq SSA CM helicity amps then light-cone limit Dharmaratna&GG (92) 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

12 Brodsky,Hwang,Schmidt rescattering
Transversity in D_Y 4/5/2019 Brodsky,Hwang,Schmidt rescattering 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

13 Interpreting rescattering
Transversity in D_Y 4/5/2019 Interpreting rescattering 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

14 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Model calculation 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

15 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Calculating h1(x,kT) 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

16 Distribution definitions
Transversity in D_Y 4/5/2019 Distribution definitions fj/A(0) (x) is integral over kT of j/A with gauge link added to insure gauge invariance 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

17 Expanding distributions
Transversity in D_Y 4/5/2019 Expanding distributions Feynman rules obtained with intermediate states inserted 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

18 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Ingredients for h1 NPB194(1982)445 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

19 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Integration results Spin independent tree level: Transversity T-odd TMD: ( .. k.j factor on both sides) 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

20 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Regularization SSA’s & asymmetries involve moments of distribution & fragmentation functions e.g. h1(1)(x) = ∫ d2k k2 h1(x, k2) which would diverge without k2 damping 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

21 Transverse momentum hadronic tensor
Transversity in D_Y 4/5/2019 Transverse momentum hadronic tensor 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

22 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 h1(x,k) calculation with Gaussian h 1/(m2-k2)=(1-x)/(kT2) result of p->q+diq kinematics h1(x,k)= f1T (x,k) in diquark model Gamberg, Goldstein, Oganessyan PRD 2003 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

23 Drell-Yan coordinates
Transversity in D_Y 4/5/2019 Drell-Yan coordinates lepton CM frame defines plane tilted at  rel.t. hadron plane of P1 &P2 Coordinates? z is direction of q in initial CM frame or x is direction along qT from initial cm boost (Collins-Soper frame) or … y x l’ P2 P1 z l 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

24 Drell-Yan Cross Sections
Transversity in D_Y 4/5/2019 Drell-Yan Cross Sections see early papers ‘70’s Collins&Soper (1977) effects of transverse momenta -> ,, non-zero Boer, Mulders, Teryaev (1998), Boer (1999) & D.Boer, S.J. Brodsky & D.S. Hwang (2002) Unpolarized pair of hadrons  l + l’ + X  involves transversity at leading twist 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

25 D-Y angular dependent 
Transversity in D_Y 4/5/2019 D-Y angular dependent  How are angular asymmetries calculated? q+anti-q annihilation (& q+anti-q + gluons). Cross sections require convoluting hadron->u with hadron->anti-u distributions.  is related to T-odd distributions at leading twist (D. Boer). 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

26 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 AzAs: h1(1) •H1(1) cos2 Both distribution & fragmentation calculated in spectator models with gaussian k π π +h.c. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

27 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 From SIDIS to Drell-Yan - analogous calculations Beam (π, p, p, …) 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

28 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Azimuthal asymmetry Integrate over all quark transverse momenta. +pl+l- X is in process; p+anti-p is calculated for various s. x direction is QT direction Notation of Boer, Mulders, Teryaev & Boer, Brodsky, Hwang 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

29 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 QT dependences General form: expectation of a hadronic tensor with distributions from quark model of incoming particles Asymmetry must vanish as QT0 ; no 1st plane orientation in forward limit of initial state. What is role of quark spin? In lepton rest frame or q+q (CM) “fat” photon produced. Whether q & q polarized or not, photon’s spin tensor (T & L) is fixed by QED. Unpolarized q+q defines a plane via QT & tensor behaves ~ (QT2 / Q2)2 . Transversely polarized q+q have ST1 ST2 tensor structure to combine with kT & pT (2 planes) 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

30 Non-leading contributions
Transversity in D_Y 4/5/2019 Non-leading contributions Spin dependent leading part ~ QT2 for small QT2 / Q2 Non-leading, spin independent part ~ extra QT2 Collins & Soper ‘77 defined tensor A2 = B = (2kTx pTx  kTpT) / M2 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

31 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 convolutions There will be the tensor B and azimuthal dependence, crucial for transmitting plane orientation information. Integrate numerically to obtain convoluted functions depending on x, mee, QT (and s). Note x ≈ mee2/xs for s >> mee2 >>QT2. Convolutions of h’s have extra factors of S at appropriate scale compared to f’s. But f’s in numerator have QT2 relative to h’s. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

32 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Drell-Yan kinematics Asymmetry  is function of 3 variables: x, √Q2 =m ,qT (after separating sin2 cos2 dependence) Want to obtain  integrated over 2 variables to c.f. experiments. How to do this while keeping “symmetry” x1, x2 Using xF treats x1, x2 symmetrically, but different range vs. q. Use = xF /2(1-) from -1/2 to +1/2 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

33 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 AzAs function Insert convolutions into asymmetry expression: Obtained for range of x, mee, QT (and s). Choose kinematic ranges of Conway, et al. (FNAL fixed target π p) applied to p p . Sum over their (limited) ranges to obtain (x), (mee2), (QT) . 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

34 (QT2) leading h1 contribution
Transversity in D_Y 4/5/2019 (QT2) leading h1 contribution Calculated s50 Gev2 - lower kinematic range than Conway, et al. E615. Antiproton beam vs. π Very similar to Boer, Brodsky, Hwang But gaussian supressed Data for π-p at s=500 GeV2 E615 f f part is at most 10% At higher s 500 Gev2 with comparable range curve decreases a bit f f part can be % of this for some values of 3 variables. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

35 (m) leading h1 contribution (s=50 GeV2)
Transversity in D_Y 4/5/2019 (m) leading h1 contribution (s=50 GeV2) Data for π-p at s=500 GeV2 E615 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

36 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 q vs. vs. x x = 0.9 x = 0.8 x = 0.7 x = 0.6 x = 0.5 x = 0.4 x = 0.3 x = 0.2 x = 0.1 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

37 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 () s=50 GeV2 () Blue -leading Red - with non-leading 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

38 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019  versus x1 s=50 GeV2 Leading twist only Including non-leading 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

39 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019  vs. xF s=50 GeV2 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

40 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Summary& Conclusions Transversity is important for full understanding of hadron spin composition. Accessed experimentally via SIDIS & Drell-Yan with SSA’s & azimuthal asymmetries. Require helicity flips & loops; combinations of factorized soft-hadronic & PQCD. BHS rescattering is mechanism for generating TMD’s at leading twist that can be measured via SSA’s & AzAs’s. quark-diquark (S=0) model with gaussian regulators allows simple calculations to demonstrate existence & size of interesting TMD’s and thus SSA’s & AzAs’s. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein

41 Transversity2005 Como G.R.Goldstein
Transversity in D_Y 4/5/2019 Summary (cont’d) Example considered: “Transversity-odd” contributions to cos2 in D-Y compared to non-leading spin independent piece (Collins&Soper). Does data support “Transversity-odd” TMD? Large effect in π+p at hi s makes this very plausible. Cleanest determination would be AzAs data on anti-p+p (GSI - PAX?). Improvements: S=1 diquark is I=1 uu flavor  p->d+diq better starting model (2-body constraints are limiting) Questions: How do Transversity-odd TMD’s evolve? Are Sudakov effects important for low qT in AzAs’s? Gluon bremsstrahlung, Qui-Sterman mechanism at other kinematics Many workers are here, much work to be done. 4/5/2019 Transversity2005 Como G.R.Goldstein SIR Goldstein


Download ppt "Transversity in D_Y 4/5/2019 Transversity, Transversity-odd Distributions and Asymmetries in Drell-Yan Processes Gary R. Goldstein Tufts University Leonard."

Similar presentations


Ads by Google