Presentation is loading. Please wait.

Presentation is loading. Please wait.

Bellringer August 27th Write a function whose graph is

Similar presentations


Presentation on theme: "Bellringer August 27th Write a function whose graph is "β€” Presentation transcript:

1 Bellringer August 27th Write a function whose graph is 𝑦= π‘₯ 3 but is shifted up 3 units and left 1 unit. Identify the shift from the parent function for 𝑓 π‘₯ =βˆ’ 1βˆ’π‘₯ βˆ’1 Identify 5 points on an xy table for the parent function of 𝑓 π‘₯ = π‘₯ 2 with the indicated shifts 𝑦=2𝑓(π‘₯) and 𝑦=𝑓(2π‘₯)

2 3.4 Operations on functions and Composition of Functions
MAFS.912.F-BF.1.1

3 Consider the following functions: 𝑓 π‘₯ = π‘₯ 2 +2π‘₯βˆ’3 and 𝑔 π‘₯ =π‘₯+1
1. Find 𝑓 π‘₯ +𝑔(π‘₯)= ____________________ (𝑓+𝑔)(π‘₯)= ________________ this is the _________________ 2. Find 𝑓 π‘₯ βˆ’π‘”(π‘₯)= _____________________ (π‘“βˆ’π‘”)(π‘₯)= ________________ this is the _________________ π‘₯ 2 +2π‘₯βˆ’3 +π‘₯+1 π‘₯ 2 +3π‘₯βˆ’2 Sum function π‘₯ 2 +2π‘₯βˆ’3 βˆ’(π‘₯+1) π‘₯ 2 +π‘₯βˆ’4 Difference function

4 Consider the following functions: 𝑓 π‘₯ = π‘₯ 2 +2π‘₯βˆ’3 and 𝑔 π‘₯ =π‘₯+1
3. Find 𝑓 π‘₯ βˆ™π‘”(π‘₯)= _________________________ (π‘“βˆ™π‘”)(π‘₯)= ________________ this is the _________________ 4. Find 𝑓(π‘₯) 𝑔(π‘₯) = _______________________________ Identify any restrictions ( 𝑓 𝑔 )(π‘₯)= ________________ this is the _________________ (π‘₯ 2 +2π‘₯βˆ’3 )(π‘₯+1) π‘₯ 3 +3 π‘₯ 2 βˆ’π‘₯βˆ’3 Product function π‘₯ 2 +2π‘₯βˆ’3 π‘₯+1 π‘₯ 2 +2π‘₯βˆ’3 π‘₯+1 , π‘₯β‰ βˆ’1 Quotient function

5 At a glance 𝑓+𝑔 π‘₯ =𝑓 π‘₯ +𝑔(π‘₯) π‘“βˆ’π‘” π‘₯ =𝑓 π‘₯ βˆ’π‘”(π‘₯) π‘“βˆ™π‘” π‘₯ =𝑓 π‘₯ βˆ™π‘”(π‘₯)
Function Notation Domain Sum {domain of f}∩{domain of g} Difference Product Quotient {domain of f}∩{domain of g}∩{𝑔(π‘₯)β‰ 0} 𝑓+𝑔 π‘₯ =𝑓 π‘₯ +𝑔(π‘₯) π‘“βˆ’π‘” π‘₯ =𝑓 π‘₯ βˆ’π‘”(π‘₯) π‘“βˆ™π‘” π‘₯ =𝑓 π‘₯ βˆ™π‘”(π‘₯) ( 𝑓 𝑔 ) π‘₯ = 𝑓(π‘₯) 𝑔(π‘₯)

6 Operations on Functions: Determining Domains of New Functions
Consider the following functions then find the sum, difference, product, and quotient functions and their domain. 𝑓 π‘₯ = π‘₯βˆ’1 π‘Žπ‘›π‘‘ 𝑔 π‘₯ = 4βˆ’π‘₯ Sum:____________________ Difference:_______________ Product:_________________ Quotient:________________ This intersection is the domain for ____________________ functions. The _________________ function requires an additional restriction of ________. Therefore the domain is ________________ π‘₯βˆ’1 + 4βˆ’π‘₯ [1, ∞) Domain of 𝑓 π‘₯ =___________ Domain of 𝑔 π‘₯ =____________ The intersection of these domains is: ________________ π‘₯βˆ’1 βˆ’ 4βˆ’π‘₯ (βˆ’βˆž,4] (π‘₯βˆ’1)(4βˆ’π‘₯) π‘₯βˆ’1 4βˆ’π‘₯ [1,4] Sum, difference, product quotient π‘₯β‰ 4 [1,4)

7 Finding a composite function and its domain
Consider the functions 𝑓 π‘₯ = π‘₯ 2 +1 π‘Žπ‘›π‘‘ 𝑔 π‘₯ =π‘₯βˆ’3 find π‘“βˆ˜π‘” π‘₯ . Write 𝑓 π‘₯ using β€œplace holder” notation ____________________ Express the composite function π‘“βˆ˜π‘” ____________________ Substitute 𝑔 π‘₯ =π‘₯βˆ’3 into f ____________________ Eliminate the parenthesis ____________________ 𝑓 ___ = [__] 2 +1 𝑓 𝑔(π‘₯) = [𝑔(π‘₯)] 2 +1 𝑓 𝑔(π‘₯) = [π‘₯βˆ’3] 2 +1 𝑓 𝑔(π‘₯) = π‘₯ 2 βˆ’6π‘₯+10

8 The domain of the composite function is the _________ of the ___________ of each original function. (Reminder: check for _________________ on your new function) Example: find the domain of π‘“βˆ˜π‘” π‘“βˆ˜π‘” π‘₯ 𝑖𝑓 𝑓 π‘₯ = 1 π‘₯βˆ’1 π‘Žπ‘›π‘‘ 𝑔 π‘₯ = 1 π‘₯ union domains restrictions D of 𝑓 π‘₯ = βˆ’βˆž, 1 βˆͺ 1,∞ 𝐷 π‘œπ‘“ 𝑔 π‘₯ =(βˆ’βˆž,0)βˆͺ(0,∞) D of π‘“βˆ˜π‘” π‘₯ =(βˆ’βˆž,0)βˆͺ 0,1 βˆͺ(1,∞)

9 Evaluating a Composite function
Given the functions 𝑓 π‘₯ = π‘₯ 2 βˆ’7 π‘Žπ‘›π‘‘ 𝑔 π‘₯ =5βˆ’ π‘₯ 2 find the following a. 𝑓(𝑔 1 ) b. 𝑓(𝑔 βˆ’2) c. 𝑔(𝑓 3 ) 𝑓(𝑔 1 )=9 𝑓 𝑔 βˆ’2 =βˆ’6 𝑓 𝑔 3 =1

10 Homework Due August 31st TB p even


Download ppt "Bellringer August 27th Write a function whose graph is "

Similar presentations


Ads by Google