Download presentation
Presentation is loading. Please wait.
Published byToril Arntzen Modified over 5 years ago
1
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays & Fridays. Welcome 10/31/18
2
.. The Green Sheets
3
Before next exam (November 16th)
Schedule of readings Before next exam (November 16th) Please read chapters in OpenStax textbook Please read Chapters 2, 3, and 4 in Plous Chapter 2: Cognitive Dissonance Chapter 3: Memory and Hindsight Bias Chapter 4: Context Dependence
4
Lab sessions This Week Project 3
6
Confidence Interval of 95% Has and alpha of 5% α = .05
Critical z -2.58 Critical z 2.58 Confidence Interval of 99% Has and alpha of 1% α = .01 99% Critical z separates rare from common scores Critical z -1.96 Critical z 1.96 Confidence Interval of 95% Has and alpha of 5% α = .05 95% Area associated with most extreme scores is called alpha Critical z -1.64 Critical z 1.64 Confidence Interval of 90% Has and alpha of 10% α = . 10 90% Area in the tails is called alpha
7
Rejecting the null hypothesis
The result is “statistically significant” if: the observed statistic is larger than the critical statistic observed stat > critical stat If we want to reject the null, we want our t (or z or r or F or x2) to be big!! the p value is less than 0.05 (which is our alpha) p < If we want to reject the null, we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis
8
Reject the null hypothesis Support for alternative
. Reject the null hypothesis 95% .. Relative to this distribution I am unusual maybe even an outlier X 95% X Relative to this distribution I am utterly typical Support for alternative hypothesis
9
Deciding whether or not to reject the null hypothesis. 05 versus
Deciding whether or not to reject the null hypothesis .05 versus .01 alpha levels What if our observed z = 2.0? How would the critical z change? Which situation (alpha and tail) would make it easiest to reject the null? α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 why? -1.96 or +1.96 p < 0.05 Yes, Significant difference Reject the null Remember, reject the null if the observed z is bigger than the critical z -2.58 or +2.58 Not a Significant difference Do not Reject the null
10
One versus two tail test of significance 5% versus 1% alpha levels
What if our observed z = 2.45? How would the critical z change? Which situation (alpha and tail) would make it easiest to reject the null? One-tailed Two-tailed α = 0.05 Significance level = .05 α = 0.01 Significance level = .01 why? -1.64 or +1.64 -1.96 or +1.96 Remember, reject the null if the observed z is bigger than the critical z Reject the null Reject the null -2.33 or +2.33 -2.58 or +2.58 Reject the null Do not Reject the null
11
One versus two tail test of significance: Comparing different critical scores (but same alpha level – e.g. alpha = 5%) 1.64 95% 5% 95% z score = -1.64 reject null 2.5% 2.5% 95% How would the critical z change? Critical scores get smaller with one tailed test 5% One tail test requires: 1. a unidirectional prediction (predict which group will have larger mean) and 2. that the results actually be in the predicted direction (predicted mean is larger) So, in a one-tailed test the “region of rejection” refers to results in the predicted direction If results are NOT in predicted direction, it is impossible to reject the null
12
Two tail tests One tail tests
In a one-tailed test do we use a negative or positive z score? Doesn’t matter whether the z is positive or negative If prediction was right, reject the null if observed score is larger than the critical score Two tail tests But, if prediction was wrong, it is impossible to reject the null anyway One tail tests Which type of test REQUIRES that you make a prediction about which group mean will be larger? When we go from the regular two-tailed test to a one tail test, what happens to the critical z? Only the one-tail test does So, if prediction was right, it is easier to reject the null The critical score get smaller But, if prediction was wrong, it is impossible to reject the null So, if prediction was right, it is easier to reject the null But, if prediction was wrong, it is impossible to reject the null
13
Review of the homework assignment
14
6 – 5 = 4.0 .25 Two tailed test 1.96 (α = .05) 1 1 = = .25 16 4 √ 4.0
z- score : because we know the population standard deviation Ho: µ = 5 Bags of potatoes from that plant are not different from other plants Ha: µ ≠ 5 Bags of potatoes from that plant are different from other plants Two tailed test 1.96 (α = .05) 1 1 = = .25 6 – 5 4 √ 16 = 4.0 .25 4.0 -1.96 1.96
15
Because the observed z (4.0 ) is bigger than critical z (1.96)
These three will always match Yes Yes Probability of Type I error is always equal to alpha Yes .05 1.64 No Because observed z (4.0) is still bigger than critical z (1.64) 2.58 No Because observed z (4.0) is still bigger than critical z(2.58) there is a difference there is not there is no difference there is 1.96 2.58
16
89 - 85 Two tailed test (α = .05) n – 1 =16 – 1 = 15
-2.13 2.13 t- score : because we don’t know the population standard deviation Two tailed test (α = .05) n – 1 =16 – 1 = 15 Critical t(15) = 2.131 2.667 6 √ 16
17
two tail test α= .05 (df) =15
18
Because the observed z (2.67) is bigger than critical z (2.13)
These three will always match Yes Yes Probability of Type I error is always equal to alpha Yes .05 1.753 No Because observed t of is still bigger than critical t of 1.753 2.947 Yes Because observed t of is not bigger than critical t of 2.947 No These three will always match No No consultant did improve morale she did not consultant did not improve morale she did 2.131 2.947
19
Value of observed statistic
Finish with statistical summary z = 4.0; p < 0.05 Or if it *were not* significant: z = 1.2 ; n.s. Start summary with two means (based on DV) for two levels of the IV Describe type of test (z-test versus t-test) with brief overview of results n.s. = “not significant” p<0.05 = “significant” The average weight of bags of potatoes from this particular plant is 6 pounds, while the average weight for population is 5 pounds. A z-test was completed and this difference was found to be statistically significant. We should fix the plant. (z = 4.0; p<0.05) Value of observed statistic
20
Value of observed statistic
Finish with statistical summary t(15) = 2.67; p < 0.05 Or if it *were not* significant: t(15) = 1.07; n.s. Start summary with two means (based on DV) for two levels of the IV Describe type of test (z-test versus t-test) with brief overview of results n.s. = “not significant” p<0.05 = “significant” The average job-satisfaction score was 89 for the employees who went On the retreat, while the average score for population is 85. A t-test was completed and this difference was found to be statistically significant. We should hire the consultant. (t(15) = 2.67; p<0.05) Value of observed statistic df
21
Thank you! See you next time!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.