Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS 4501: Information Retrieval

Similar presentations


Presentation on theme: "CS 4501: Information Retrieval"β€” Presentation transcript:

1 CS 4501: Information Retrieval
Recap: From RankNet to LambdaRank to LambdaMART: An Overview Christopher J.C. Burges, 2010 Minimizing mis-ordered pair => maximizing IR metrics? Mis-ordered pairs: 6 Mis-ordered pairs: 4 AP: 5 8 AP: 5 12 DCG: 1.333 DCG: 0.931 Position is crucial! CS 4501: Information Retrieval

2 CS 4501: Information Retrieval
Recap: From RankNet to LambdaRank to LambdaMART: An Overview Christopher J.C. Burges, 2010 Weight the mis-ordered pairs? Some pairs are more important to be placed in the right order Inject into object function 𝑦 𝑖 > 𝑦 𝑗 Ξ© 𝑑 𝑖 , 𝑑 𝑗 exp βˆ’π‘€Ξ”Ξ¦ π‘ž 𝑛 , 𝑑 𝑖 , 𝑑 𝑗 Inject into gradient πœ† 𝑖𝑗 = πœ• 𝑂 π‘Žπ‘π‘π‘Ÿπ‘œ πœ•π‘€ Δ𝑂 Depend on the ranking of document i, j in the whole list Change in original object, e.g., NDCG, if we switch the documents i and j, leaving the other documents unchanged Gradient with respect to approximated objective, i.e., exponential loss on mis-ordered pairs CS 4501: Information Retrieval

3 Relevance Feedback Hongning Wang

4 What we have learned so far
Indexed corpus Crawler Research attention Ranking procedure Feedback Evaluation Doc Analyzer (Query) User Query Rep Doc Rep (Index) Ranker Indexer results Index CS4501: Information Retrieval

5 Inferred information need
User feedback should be An IR system is an interactive system Query Information need GAP! Feedback Ranked documents Inferred information need CS4501: Information Retrieval

6 CS4501: Information Retrieval
Relevance feedback Results: d1 3.5 d2 2.4 … dk 0.5 ... Retrieval Engine Document collection Query User judgment Updated query Feedback Judgments: d1 + d2 - d3 + … dk - ... CS4501: Information Retrieval

7 CS4501: Information Retrieval
Basic idea in feedback Query expansion Feedback documents can help discover related query terms E.g., query=β€œinformation retrieval” Relevant docs may likely share very related words, such as β€œsearch”, β€œsearch engine”, β€œranking”, β€œquery” Expand the original query with such words will increase recall and sometimes also precision CS4501: Information Retrieval

8 CS4501: Information Retrieval
Basic idea in feedback Learning-based retrieval Feedback documents can be treated as supervision for ranking model update Covered in the lecture of β€œlearning-to-rank” CS4501: Information Retrieval

9 Relevance feedback in real systems
Google used to provide such functions Guess why? Relevant Nonrelevant CS4501: Information Retrieval

10 Relevance feedback in real systems
Popularly used in image search systems CS4501: Information Retrieval

11 Pseudo relevance feedback
What if the users are reluctant to provide any feedback Results: d1 3.5 d2 2.4 … dk 0.5 ... Retrieval Engine Query Feedback Updated query Document collection Judgments: d1 + d2 + d3 + … dk - ... top k CS4501: Information Retrieval

12 CS4501: Information Retrieval
Feedback techniques Feedback as query expansion Step 1: Term selection Step 2: Query expansion Step 3: Query term re-weighting Feedback as training signal Covered in learning to rank CS4501: Information Retrieval

13 Relevance feedback in vector space models
General idea: query modification Adding new (weighted) terms Adjusting weights of old terms The most well-known and effective approach is Rocchio [Rocchio 1971] CS4501: Information Retrieval

14 Illustration of Rocchio feedback
- - - - - - + + + - - + - - - - + + q - q - + + + + + - - - - + + + + + - + + + - - - - - - - - CS4501: Information Retrieval

15 Formula for Rocchio feedback
Standard operation in vector space Parameters Modified query π‘ž π‘š =𝛼 π‘ž + 𝛽 | 𝐷 π‘Ÿ | βˆ€ 𝑑 𝑖 ∈ 𝐷 π‘Ÿ 𝑑 𝑖 βˆ’ 𝛾 | 𝐷 𝑛 | βˆ€ 𝑑 𝑗 ∈ 𝐷 𝑛 𝑑 𝑗 Original query Rel docs Non-rel docs CS4501: Information Retrieval

16 CS4501: Information Retrieval
Rocchio in practice Negative (non-relevant) examples are not very important (why?) Efficiency concern Restrict the vector onto a lower dimension (i.e., only consider highly weighted words in the centroid vector) Avoid β€œtraining bias” Keep relatively high weight on the original query Can be used for relevance feedback and pseudo feedback Usually robust and effective CS4501: Information Retrieval

17 Recap: relevance feedback
Results: d1 3.5 d2 2.4 … dk 0.5 ... Retrieval Engine Document collection Query User judgment Updated query Feedback Judgments: d1 + d2 - d3 + … dk - ... CS4501: Information Retrieval

18 Recap: illustration of Rocchio feedback
- - - - - - + + + - - + - - - - + + q - q - + + + + + - - - - + + + + + - + + + - - - - - - - - CS4501: Information Retrieval

19 Feedback in probabilistic models
Rel. doc model NonRel. doc model β€œRel. query” model Classic Prob. Model Language Model (q1,d1,1) (q1,d2,1) (q1,d3,1) (q1,d4,0) (q1,d5,0) (q3,d1,1) (q4,d1,1) (q5,d1,1) (q6,d2,1) (q6,d3,0) Parameter Estimation P(D|Q,R=1) P(D|Q,R=0) P(Q|D,R=1) Feedback: - P(D|Q,R=1) can be improved for the current query and future doc - P(Q|D,R=1) can be improved for the current doc and future query CS4501: Information Retrieval

20 Robertson-Sparck Jones Model (Robertson & Sparck Jones 76)
(RSJ model) Two parameters for each term Ai: pi = P(Ai=1|Q,R=1): prob. that term Ai occurs in a relevant doc ui = P(Ai=1|Q,R=0): prob. that term Ai occurs in a non-relevant doc How to estimate these parameters? Suppose we have relevance judgments, β€œ+0.5” and β€œ+1” can be justified by Bayesian estimation as priors P(D|Q,R=1) can be improved for the current query and future doc Per-query estimation! CS4501: Information Retrieval

21 Feedback in language models
Recap of language model Rank documents based on query likelihood Difficulty Documents are given, i.e., 𝑝(𝑀|𝑑) is fixed Document language model CS4501: Information Retrieval

22 Feedback in language models
Approach Introduce a probabilistic query model Ranking: measure distance between query model and document model Feedback: query model update Q: Back to vector space model? A: Kind of, but in a different perspective. CS4501: Information Retrieval

23 Kullback-Leibler (KL) divergence based retrieval model
Probabilistic similarity measure π‘ π‘–π‘š π‘ž;𝑑 βˆβˆ’πΎπΏ( πœƒ π‘ž | πœƒ 𝑑 βˆ’ 𝑀 𝑝 𝑀 πœƒ π‘ž log 𝑝 𝑀 πœƒ π‘ž + 𝑀 𝑝 𝑀 πœƒ π‘ž log 𝑝 𝑀 πœƒ 𝑑 Query-specific quality, ignored for ranking Query language model, need to be estimated Document language model, we know how to estimate CS4501: Information Retrieval

24 CS4501: Information Retrieval
Background knowledge Kullback-Leibler divergence A non-symmetric measure of the difference between two probability distributions P and Q 𝐾𝐿(𝑃| 𝑄 = 𝑃 π‘₯ log 𝑃(π‘₯) 𝑄(π‘₯) 𝑑π‘₯ It measures the expected number of extra bits required to code samples from P when using a code based on Q P usually refers to the β€œtrue” data distribution, Q refers to the β€œapproximated” distribution Properties Non-negative 𝐾𝐿(𝑃| 𝑄 =0, iff 𝑃=𝑄 almost everywhere Explains why π‘ π‘–π‘š π‘ž;𝑑 βˆβˆ’π·( πœƒ π‘ž | πœƒ 𝑑 CS4501: Information Retrieval

25 Kullback-Leibler (KL) divergence based retrieval model
Retrieval β‰ˆ estimation of πœƒ π‘ž and πœƒ 𝑑 𝑅𝑒𝑙 π‘ž;𝑑 ∝ π‘€βˆˆπ‘‘,𝑝 𝑀 πœƒ π‘ž >0 𝑝 𝑀 πœƒ π‘ž log 𝑝(𝑀|𝑑) 𝛼 𝑑 𝑝(𝑀|𝐢) + log 𝛼 𝑑 A generalized version of query-likelihood language model 𝑝 𝑀 πœƒ π‘ž is the empirical distribution of words in a query same smoothing strategy CS4501: Information Retrieval

26 Feedback as model interpolation
Document D Results Query Q Key: estimate the feedback model Feedback Docs F={d1, d2 , …, dn} =0 No feedback =1 Full feedback Generative model Q: Rocchio feedback in vector space model? A: Very similar, but with different interpretations. CS4501: Information Retrieval

27 Feedback in language models
Feedback documents protect passengers, accidental/malicious harm, crime, rules CS4501: Information Retrieval

28 Generative mixture model of feedback
F={d1, …, dn} P(w| F ) P(w| C)  1- P(feedback) Background words Topic words log 𝑝( 𝑑 𝐹 )= 𝑑,𝑀 𝑐 𝑀,𝑑 log 1βˆ’πœ† 𝑝 𝑀 πœƒ 𝐹 +πœ†π‘(𝑀|𝐢)  = Noise ratio in feedback documents Maximum Likelihood πœƒ 𝐹 =π‘Žπ‘Ÿπ‘”π‘šπ‘Ž π‘₯ πœƒ log 𝑝( 𝑑 𝐹 ) CS4501: Information Retrieval

29 CS4501: Information Retrieval
How to estimate F? fixed the 0.2 a 0.1 we 0.01 to 0.02 … flight company Feedback Doc(s) Known Background p(w|C) =0.7 ML Estimator Unknown query topic p(w|F)=? β€œairport security” … accident =? regulation =? passenger=? rules =? =0.3 Suppose, we know the identity of each word ; but we don’t... CS4501: Information Retrieval

30 Appeal to Expectation Maximization algorithm
Identity (β€œhidden”) variable: zi οƒŽ{1 (background), 0(topic)} Suppose the parameters are all known, what’s a reasonable guess of zi? - depends on  (why?) - depends on p(w|C) and p(w|F) (how?) zi 1 ... the paper presents a text mining algorithm ... E-step M-step Why in Rocchio we did not distinguish a word’s identity? CS4501: Information Retrieval

31 A toy example of EM computation
Expectation-Step: Augmenting data by guessing hidden variables Maximization-Step With the β€œaugmented data”, estimate parameters using maximum likelihood Assume =0.5 CS4501: Information Retrieval

32 Example of feedback query model
Open question: how do we handle negative feedback? Query: β€œairport security” Pesudo feedback with top 10 documents =0.7 =0.9 CS4501: Information Retrieval

33 CS4501: Information Retrieval
What you should know Purpose of relevance feedback Rocchio relevance feedback for vector space models Query model based feedback for language models CS4501: Information Retrieval

34 CS4501: Information Retrieval
Today’s reading Chapter 9. Relevance feedback and query expansion 9.1 Relevance feedback and pseudo relevance feedback 9.2 Global methods for query reformulation CS4501: Information Retrieval


Download ppt "CS 4501: Information Retrieval"

Similar presentations


Ads by Google