Download presentation
Presentation is loading. Please wait.
1
Signal Processing First
Lecture 16 IIR Filters: Feedback and H(z) 4/5/2019 © 2003, JH McClellan & RW Schafer
2
© 2003, JH McClellan & RW Schafer
READING ASSIGNMENTS This Lecture: Chapter 8, Sects. 8-1, 8-2 & 8-3 Other Reading: Recitation: Ch. 8, Sects 8-1 thru 8-4 POLES & ZEROS Next Lecture: Chapter 8, Sects & 8-6 4/5/2019 © 2003, JH McClellan & RW Schafer
3
© 2003, JH McClellan & RW Schafer
LECTURE OBJECTIVES INFINITE IMPULSE RESPONSE FILTERS Define IIR DIGITAL Filters Have FEEDBACK: use PREVIOUS OUTPUTS Show how to compute the output y[n] FIRST-ORDER CASE (N=1) Z-transform: Impulse Response h[n] H(z) 4/5/2019 © 2003, JH McClellan & RW Schafer
4
© 2003, JH McClellan & RW Schafer
THREE DOMAINS Z-TRANSFORM-DOMAIN POLYNOMIALS: H(z) FREQ-DOMAIN TIME-DOMAIN 4/5/2019 © 2003, JH McClellan & RW Schafer
5
Quick Review: Delay by nd
IMPULSE RESPONSE SYSTEM FUNCTION FREQUENCY RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
6
© 2003, JH McClellan & RW Schafer
LOGICAL THREAD FIND the IMPULSE RESPONSE, h[n] INFINITELY LONG IIR Filters EXPLOIT THREE DOMAINS: Show Relationship for IIR: 4/5/2019 © 2003, JH McClellan & RW Schafer
7
© 2003, JH McClellan & RW Schafer
ONE FEEDBACK TERM ADD PREVIOUS OUTPUTS PREVIOUS FEEDBACK FIR PART of the FILTER FEED-FORWARD CAUSALITY NOT USING FUTURE OUTPUTS or INPUTS 4/5/2019 © 2003, JH McClellan & RW Schafer
8
© 2003, JH McClellan & RW Schafer
FILTER COEFFICIENTS ADD PREVIOUS OUTPUTS MATLAB yy = filter([3,-2],[1,-0.8],xx) SIGN CHANGE FEEDBACK COEFFICIENT 4/5/2019 © 2003, JH McClellan & RW Schafer
9
© 2003, JH McClellan & RW Schafer
COMPUTE OUTPUT 4/5/2019 © 2003, JH McClellan & RW Schafer
10
© 2003, JH McClellan & RW Schafer
COMPUTE y[n] FEEDBACK DIFFERENCE EQUATION: NEED y[-1] to get started 4/5/2019 © 2003, JH McClellan & RW Schafer
11
© 2003, JH McClellan & RW Schafer
AT REST CONDITION y[n] = 0, for n<0 BECAUSE x[n] = 0, for n<0 4/5/2019 © 2003, JH McClellan & RW Schafer
12
© 2003, JH McClellan & RW Schafer
COMPUTE y[0] THIS STARTS THE RECURSION: SAME with MORE FEEDBACK TERMS 4/5/2019 © 2003, JH McClellan & RW Schafer
13
© 2003, JH McClellan & RW Schafer
COMPUTE MORE y[n] CONTINUE THE RECURSION: 4/5/2019 © 2003, JH McClellan & RW Schafer
14
© 2003, JH McClellan & RW Schafer
PLOT y[n] 4/5/2019 © 2003, JH McClellan & RW Schafer
15
© 2003, JH McClellan & RW Schafer
IMPULSE RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
16
© 2003, JH McClellan & RW Schafer
IMPULSE RESPONSE DIFFERENCE EQUATION: Find h[n] CONVOLUTION in TIME-DOMAIN IMPULSE RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer LTI SYSTEM
17
© 2003, JH McClellan & RW Schafer
PLOT IMPULSE RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
18
Infinite-Length Signal: h[n]
POLYNOMIAL Representation SIMPLIFY the SUMMATION APPLIES to Any SIGNAL 4/5/2019 © 2003, JH McClellan & RW Schafer
19
© 2003, JH McClellan & RW Schafer
Derivation of H(z) Recall Sum of Geometric Sequence: Yields a COMPACT FORM 4/5/2019 © 2003, JH McClellan & RW Schafer
20
H(z) = z-Transform{ h[n] }
FIRST-ORDER IIR FILTER: 4/5/2019 © 2003, JH McClellan & RW Schafer
21
H(z) = z-Transform{ h[n] }
ANOTHER FIRST-ORDER IIR FILTER: 4/5/2019 © 2003, JH McClellan & RW Schafer
22
© 2003, JH McClellan & RW Schafer
CONVOLUTION PROPERTY MULTIPLICATION of z-TRANSFORMS CONVOLUTION in TIME-DOMAIN IMPULSE RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
23
STEP RESPONSE: x[n]=u[n]
4/5/2019 © 2003, JH McClellan & RW Schafer
24
© 2003, JH McClellan & RW Schafer
DERIVE STEP RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
25
© 2003, JH McClellan & RW Schafer
PLOT STEP RESPONSE 4/5/2019 © 2003, JH McClellan & RW Schafer
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.