Download presentation
Presentation is loading. Please wait.
1
Pools, Counters, and Parallelism
Multiprocessor Synchronization Nir Shavit Spring 2003
2
Unordered set of objects
A Shared Pool public interface Pool { public void put(Object x); public Object remove(); } Unordered set of objects Put Inserts object blocks if full Remove Removes & returns an object blocks if empty 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
3
Simple Locking Implementation
Solution: Queue Lock put Problem: hot-spot contention put Problem: sequential bottleneck Solution??? 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
4
Counting Implementation
put 19 20 21 19 20 21 remove Only the counters are sequential 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
5
Not necessarily linearizable
Shared Counter No duplication No Omission 3 2 1 1 2 3 Not necessarily linearizable 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
6
Shared Counters Can we build a shared counter with Locking
Low memory contention, and Real parallelism? Locking Can use queue locks to reduce contention No help with parallelism issue … 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
7
Software Combining Tree
P2 1,2,3 4 P3 P3 1 P5 P6 Pn Contention: only local spinning Combine increment requests up tree, wait for winners to propagate answers down Parallelism: high combining rate implies n/log n speed-up 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
8
Two threads meet, combine sums
Combining Trees +5 +3 Two threads meet, combine sums +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
9
Combined sum added to root
Combining Trees 5 Combined sum added to root +5 +3 +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
10
New value returned to children
Combining Trees 5 New value returned to children 5 +3 +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
11
Prior values returned to threads
Combining Trees 5 5 Prior values returned to threads 3 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
12
Tree Node Status FREE COMBINE RESULT ROOT Nothing going on
Waiting to combine RESULT Results ready ROOT Stop here 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
13
Code public class CTree { static final int ROOT = 0; // stop here
static final int COMBINE = 1; // waiting to combine static final int RESULT = 2; // your results are ready static final int FREE = 3; // nothing happening here private Lock lock; int status; boolean waitFlag; int firstIncr, secondIncr, result; public int fetchAdd() { int lastLevel = 0, savedResult = 0; CTree node = null; 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
14
Phase One: find path up to first COMBINE or ROOT node
5 Lock node, examine status +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
15
Phase One: found FREE node
5 Set to COMBINE, unlock, move up FREE +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
16
Phase One: found RESULT node
5 Unlock & wait for status change RESULT 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
17
Phase One: found COMBINE or ROOT node
5 COMBINE Unlock, start phase two 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
18
Phase One // Part One, find path up to first COMBINE or ROOT node
int level = FIRST_LEVEL; boolean going_up = true; int pid = Thread.myIndex(); while (going_up) { node = getNode(level, pid); node.lock.acquire(); switch (node.status) { case RESULT: node.lock.release(); while (node.status == RESULT) {}; break; case FREE: node.status = COMBINE; level = level + 1; default: // COMBINE or ROOT node lastLevel = level; going_up = false; }} 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
19
Phase Two: revisit path, combine if requested
+5 +2 +3 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
20
Phase Two // Part Two, lock path from Part 1, combining values along the way int total = 1; level = FIRST_LEVEL; while (level < lastLevel) { CTree visited = getNode(level, pid); visited.lock.acquire(); visited.firstIncr = total; if (visited.waitFlag) { // do combining total = total + visited.secondIncr; } level = level + 1; 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
21
Phase Three: stopped at COMBINE node
+5 Lock node, deposit value, unlock & wait for my value to be combined by the other thread +2 +3 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
22
Phase Three: stopped at ROOT
+5 Add my value to root and start back down +2 +3 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
23
Phase Three // Part Three, operate on last visited node
if (node.status == COMBINE) { node.secondIncr = total; node.waitFlag = true; while (node.status == COMBINE) { node.lock.release(); while (node.status == COMBINE) {} node.lock.acquire(); } node.waitFlag = false; savedResult = node.result; node.status = FREE; } else { node.result = node.result + total; 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
24
Phase Four: propagate values down
COMBINE 5 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
25
Phase Four // Part Four, descend tree and distribute results
node.lock.release(); level = lastLevel - 1; while (level >= FIRST_LEVEL) { CTree visited = getNode(level, pid); if (visited.waitFlag) { visited.status = RESULT; visited.result = savedResult + visited.firstIncr; } else { visited.status = FREE; visited.lock.release(); level = level - 1; }} return savedResult; 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
26
Bad News: High Latency Log n +5 +2 +3 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
27
Good News: Real Parallelism
1 thread +5 +2 +3 2 threads 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
28
Index Distribution Benchmark
void indexBench(int iters, int work) { while (int i < iters) { i = fetch&inc(); Thread.sleep(random() % work); }} Take a number Pretend to work (more work, less concurrency) 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
29
Performance Benchmarks
Alewife DSM architecture Simulated Throughput: average number of inc operations in 1 million cycle period. Latency: average number of simulator cycles per inc operation. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
30
The Alewife Topology 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
* Posters courtesy of the MIT Architecture Group 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
31
Performance work = 0 Latency: Throughput: cycles per operation
operations per million cycles Latency: Throughput: 90000 90000 80000 80000 Splock 70000 60000 Ctree[n] 60000 50000 50000 40000 30000 30000 Ctree[n] 20000 20000 50 10000 Splock 50 100 150 200 250 300 100 150 200 250 300 num of processors num of processors work = 0 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
32
The Combining Paradigm
Implements any RMW operation When tree is loaded Takes 2 log n steps for n requests Very sensitive to load fluctuations: if the arrival rates drop the combining rates drop overall performance deteriorates! 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
33
Combining Load Sensitivity
work = 500 Notice Load Fluctuations 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
34
Combining Load Sensitivity
Concurrency W=100 W=1000 W=5000 1 0.0 2 10.3 2.0 0.3 4 26.1 8.5 2.2 8 40.3 19.9 10.6 16 50.4 31.7 32 55.3 39.5 18.5 48 54.2 40.0 15.6 64 65.5 18.7 As work increases, concurrency decreases, and combining levels drop significantly… 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
35
Better to Wait Longer Short wait Medium wait Indefinite wait 5-Apr-19
Figure~\ref{fig: ctree wait} compares combining tree latency when {\tt work} is high using 3 waiting policies: wait 16 cycles, wait 256 cycles, and wait indefinitely. When the number of processors is larger than 64, indefinite waiting is by far the best policy. This follows since an un-combined token message locks later received token messages from progressing until it returns from traversing the root, so a large performance penalty is paid for each un-combined message. Because the chances of combining are good at higher arrival rates we found that when {\tt work = 0}, simulation using more than four processors justify indefinite waiting. Indefinite wait 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
36
Can we do better? Centralized: One slow process delays everybody!
Synchronized: Wait for others to bring numbers. Distributed: Spread out work across machine Coordinated: Coordinate but do not wait 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
37
. Counting Networks How to coordinate access to counters?
P1 Counting Network C 0, 4, How to coordinate access to counters? P2 . C 1, 5, C 2, 6, C Pn 3, No duplication, No omission 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
38
A Balancer Input wires Output wires 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
39
Tokens Traverse Balancers
Token i enters on any wire leaves on wire i mod (fan-out) 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
40
Tokens Traverse Balancers
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
41
Tokens Traverse Balancers
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
42
Tokens Traverse Balancers
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
43
Tokens Traverse Balancers
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
44
Tokens Traverse Balancers
Arbitrary input distribution Balanced output distribution 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
45
All tokens that entered have exited
Quiescent State All tokens that entered have exited 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
46
Smoothing Network k-smooth property 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
47
Counting Network step property 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
48
Counting Networks Count!
0, 4, 1, 5, 2, 6,10.... 3, 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
49
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
50
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
51
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
52
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
53
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
54
Bitonic[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
55
Counting Networks Good for counting number of tokens low contention
no sequential bottleneck high throughput 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
56
Shared Memory Implementation
1+4k 0/1 0/1 0/1 2+4k 3+4k 0/1 0/1 0/1 4+4k 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
57
Shared Memory Implementation
class balancer { boolean toggle; balancer[] next; synchronized boolean flip() { boolean oldValue = this.toggle; this.toggle = !this.toggle; return oldValue; } 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
58
Shared Memory Implementation
Balancer traverse (Balancer b) { while(!b.isLeaf()) { boolean toggle = b.flip(); if (toggle) b = b.next[0] else b = b.next[1] return b; } 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
59
Message-Passing Implementation
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
60
The Bitonic Counting Network
Bitonic[2k] inductive construction: x 1 2 3 4 5 6 7 Merger[2k] y 1 2 3 4 5 6 7 Bitonic[k] Bitonic[k] Merger[2k] receives two width k sequences that have the step property and outputs a width 2k sequence that has the step property. Need only show how to construct Merger[2k]. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
61
Merger[2k] even odd y0 x y1 y2 y3 y2k-2 y2k-1 Merger[k] z … 5-Apr-19
1 2 3 4 5 6 K-1 Merger[k] even odd z y0 y1 y2 y3 y2k-2 y2k-1 … 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
62
Merger[4] Bitonic[2] Merger[4] even odd odd even 5-Apr-19
y0 even x 1 2 3 4 5 6 K-1 z 1 2 3 4 5 6 K-1 y1 y2 Merger[k] y3 odd … x 1 2 3 4 5 6 K-1 odd z 1 2 3 4 5 6 K-1 Merger[k] even … y2k-2 y2k-1 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
63
Merger[8] Merger[8] even x 1 2 3 4 5 6 K-1 z 1 2 3 4 5 6 K-1 z0 x 1 2 3 4 5 6 7 y 1 2 3 4 5 6 7 z1 Merger[k] z2 Bitonic[k] z3 odd … x 1 2 3 4 5 6 K-1 odd z 1 2 3 4 5 6 K-1 Merger[k] Bitonic[k] even … z2k-2 z2k-1 Theorem: in any quiescent state, the outputs of Bitonic[w] have the step property. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
64
Depth of the Bitonic Network
even x 1 2 3 4 5 6 K-1 x 1 2 3 4 5 6 K-1 z 1 2 3 4 5 6 K-1 y0 Bitonic[k] y1 y2 Merger[k] y3 odd … Width w x 1 2 3 4 5 6 K-1 x 1 2 3 4 5 6 K-1 odd z 1 2 3 4 5 6 K-1 Bitonic[k] Merger[k] even … y2k-2 y2k-1 Every layer adds a row of balancers so depth is log 2 + log 4 + … + log w/2 + log w = (log w)(log w + 1)/2 = O(log2 w) 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
65
A Lower Bound on Depth A Sorting Network is a synchronous
7 3 1 4 3 7 1 4 3 1 7 4 1 3 4 7 A Sorting Network is a synchronous network of comparators 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
66
Counting Implies Sorting
Theorem: if a balancing network counts, then its isomorphic comparison network sorts, but not vice versa. Proof: (of vice versa) Odd-even sorting network Doesn’t have the step property 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
67
Counting Implies Sorting
Proof: (if it counts it sorts) Lemma [0-1 Principle]: a comparison network that sorts all sequences of 0’s and 1’s is a sorting network. 1 1 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
68
Lower Bound on Depth Theorem: The depth of any width w sorting network is at least W(log w). Corollary: The depth of any width w counting network is at least W(log w). Theorem: there exists a counting network of q(log w) depth. Unfortunately…non-constructive and contstants in the 1000s. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
69
Merger[2k] Merger[2k] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
70
Merger[2k] Schematic Merger[k] 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
71
Merger[2k] Layout 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
72
Merger[2k] Schematic Merger[k] Merger[k] Bitonic[k] Bitonic[k] even
odd Bitonic[k] odd Merger[k] even 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
73
Outputs from Bitonic[k]
Odd-Even has at most one more Proof Outline even odd odd even Outputs from Bitonic[k] Inputs to Merger[k] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
74
Proof Outline even odd odd even Inputs to Merger[k]
Outputs of Merger[k] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
75
Proof Outline Outputs of Merger[k] Outputs of last layer 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
76
Unfolded Bitonic Network
Merger[8] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
77
Unfolded Bitonic Network
Merger[4] Merger[4] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
78
Unfolded Bitonic Network
Merger[2] Merger[2] Merger[2] Merger[2] 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
79
Bitonic[k] Depth Width k Depth is (log2 k)(log2 k + 1)/2 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
80
The Periodic Network 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
81
Bitonic[k] is not Linearizable
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
82
Bitonic[k] is not Linearizable
5-Apr-19 M. Herlihy & N. Shavit (c) 2003
83
Bitonic[k] is not Linearizable
2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
84
Bitonic[k] is not Linearizable
2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
85
Bitonic[k] is not Linearizable
Problem is: Red finished before Yellow started Red took 2 Yellow took 0 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
86
Network Depth Each block[k] has depth log2 k Need log2 k blocks
Grand total of (log2 k)2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
87
Lower Bound on Depth Theorem: The depth of any width w counting network is at least Ω(log w). Theorem: there exists a counting network of θ(log w) depth. Unfortunately, proof is non-constructive and constants in the 1000s. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
88
Sequential Theorem If a balancing network counts Then it counts
Sequentially, meaning that Tokens traverse one at a time Then it counts Even if tokens traverse concurrently 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
89
Red First, Blue Second 5-Apr-19 M. Herlihy & N. Shavit (c) 2003 (2)
90
Blue First, Red Second 5-Apr-19 M. Herlihy & N. Shavit (c) 2003 (2)
91
Either Way Same balancer states 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
92
Same output distribution
Order Doesn’t Matter Same output distribution Same balancer states 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
93
Index Distribution Benchmark
void indexBench(int iters, int work) { while (int i = 0 < iters) { i = fetch&inc(); Thread.sleep(random() % work); } 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
94
Performance (Simulated)
Higher is better! Throughput Counting benchmark: Ignore startup and winddown times Spin lock is best at low concurrenncy, drops off rapidly MCS queue lock Spin lock Number processors * All graphs taken from Herlihy,Lim,Shavit, copyright ACM. 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
95
Performance (Simulated)
64-leaf combining tree 80-balancer counting network Throughput Higher is better! Counting benchmark: Ignore startup and winddown times Spin lock is best at low concurrenncy, drops off rapidly MCS queue lock Spin lock Number processors 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
96
Performance (Simulated)
64-leaf combining tree 80-balancer counting network Combining and counting are pretty close Throughput Counting benchmark: Ignore startup and winddown times Spin lock is best at low concurrenncy, drops off rapidly MCS queue lock Spin lock Number processors 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
97
Performance (Simulated)
64-leaf combining tree 80-balancer counting network But they beat the hell out of the competition! Throughput Counting benchmark: Ignore startup and winddown times Spin lock is best at low concurrenncy, drops off rapidly MCS queue lock Spin lock Number processors 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
98
Saturation and Performance
Undersaturated P < w log w Optimal performance Saturated P = w log w Oversaturated P > w log w 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
99
Throughput vs. Size Throughput Number processors Bitonic[16]
The simulation was extended to 80 processors, one balancer per processor in The 16 wide network, and as can be seen the counting network scales… Number processors 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
100
Adding Networks Combining trees generalize
Fetch&add Add any number, not just 1 What about counting networks? 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
101
Bad News If an adding network Then every token must traverse
Supports n concurrent tokens Then every token must traverse At least n-1 balancers In sequential executions 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
102
Uh-Oh Adding network size depends on n High latency
Like combining trees Unlike counting networks High latency Depth linear in n Not logarithmic in w 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
103
Generic Counting Network
+1 +2 +2 2 +2 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
104
First token would visit green balancers if it runs solo
+1 +2 First token would visit green balancers if it runs solo +2 +2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
105
Claim Look at path of +1 token
All other +2 tokens must visit some balancer on +1 token’s path 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
106
Second Token Takes 0 +1 +2 +2 +2 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
107
They can’t both take zero!
Second Token +1 Takes 0 +2 +2 Takes 0 +2 They can’t both take zero! 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
108
If Second avoid First’s Path
Second token Doesn’t observe first First hasn’t run Chooses 0 First token Doesn’t observe second Disjoint paths 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
109
If Second avoids First’s Path
Because +1 token chooses 0 It must be ordered first So +2 token ordered second So +2 token should return 1 Something’s wrong! 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
110
Halt blue token before first green balancer
Second Token +1 +2 +2 +2 Halt blue token before first green balancer 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
111
Third Token Takes 0 or 2 +1 +2 +2 +2 5-Apr-19
M. Herlihy & N. Shavit (c) 2003
112
They can’t both take zero, and they can’t take 0 and 2!
Third Token +1 Takes 0 +2 They can’t both take zero, and they can’t take 0 and 2! +2 +2 Takes 0 or 2 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
113
First,Second, & Third Tokens must be Ordered
Did not observe +1 token May have observed earlier +2 token Takes an even number 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
114
First,Second & Third Tokens must be Ordered
Because +1 token’s path is disjoint It chooses 0 Ordered first Rest take odd numbers But last token takes an even number Something’s wrong! 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
115
Halt blue token before first green balancer
Third Token +1 +2 +2 +2 Halt blue token before first green balancer 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
116
Continuing in this way We can “park” a token
In front of a balancer That token #1 will visit There are n-1 other tokens Two wires per balancer Path includes n-1 balancers! 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
117
Theorem In any adding network Same arguments apply to
In sequential executions Tokens traverse at least n-1 balancers Same arguments apply to Linearizable counting networks Multiplying networks And others 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
118
Implication QED Counting networks with Give
Tokens (+1) Anti-tokens (-1) Give Highly concurrent Low contention fetch&inc + fetch&dec registers QED 5-Apr-19 M. Herlihy & N. Shavit (c) 2003
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.