Presentation is loading. Please wait.

Presentation is loading. Please wait.

A new definition for the dynamics

Similar presentations


Presentation on theme: "A new definition for the dynamics"— Presentation transcript:

1 A new definition for the dynamics
G. Bertrand Laboratoire A2SI, ESIEE Institut Gaspard Monge – UMR UMLV/ESIEE/CNRS ISMM 2005

2 A discrete approach Let G = (V,E) be an (undirected) graph.
We denote by Func (V) the family composed of all maps from V to Z. ISMM 2005

3 Pass value Let F be in Func (V). If п is a path, we set F(п) = Max{F(x); x  п}. Let x, y in V. We set F(x,y) = Min {F(п); п  п(x,y)}, F(x,y) is the pass value between x and y. Let X and Y be two subsets of V. We set F(X,Y) = Min{F(x,y); x  X and y  Y}. ISMM 2005

4 Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

5 Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

6 Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

7 Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005 F(X,Y) = 31

8 Dynamics (M. Grimaud,1992) Let X be a minimum for F Let G(X) be the number such that: i) if X = Xmin, then G(X) = infinity; ii) otherwise, G(X) = Min {F(X,Y); for all minima Y such that F(Y) < F(X)}. The dynamics of a minimum X is the number Dyn(X) = G(X) – F(X) ISMM 2005

9 Dynamics ISMM 2005

10 Dynamics ISMM 2005

11 Dynamics ISMM 2005

12 Dynamics ISMM 2005

13 Dynamics ISMM 2005

14 Dynamics ISMM 2005

15 Dynamics ISMM 2005

16 k-Separation Let F be in Func (V) and let x and y be in V We say that x and y are separated (for F) if F(x,y) > Max{F(x),F(y)}. We say that x and y are k-separated (for F) if x and y are separated and F(x,y) = k. ISMM 2005

17 x and y are not separated
k-separation x and y are not separated 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

18 k-separation y x x and y are 20-separated ISMM 2005 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

19 Separation Let F and G be in Func (V) such that G  F. We say that G is a separation of F if, for all x,y in V, if x and y are k-separated for F, then x and y are k-separated for G. ISMM 2005

20 Separation F ISMM 2005 G

21 Separation F ISMM 2005 G

22 Separation F K ISMM 2005 G

23 Separation F ISMM 2005 G

24 Separation F K ISMM 2005 G

25 Separation F K ISMM 2005 G is a separation of F G

26 Dynamics and separation
Let G ≤ F (G being a minima extension of F) If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F ISMM 2005

27 Dynamics and separation
Let G ≤ F (G being a minima extension of F). If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F. The converse is not true ISMM 2005

28 Dynamics: counter-example
F ISMM 2005

29 Dynamics: counter-example
G ISMM 2005

30 Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. ISMM 2005

31 Ordered minima 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

32 Ordered minima F(.,<)=8 5 3 2 F(.,<)=20 F(.,<)=30 1 4
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=infty F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

33 Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) ISMM 2005

34 Ordered minima Dyn(.,<)=8-5 5 3 2 Dyn(.,<)=20-0 Dyn(.,<)=30-2
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 Dyn(.,<)=20-0 40 6 6 40 6 11 11 11 25 4 4 4 40 Dyn(.,<)=30-2 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 Dyn(.,<)=31-3 40 40 40 40 40 40 40 40 40 40 40 40 40 Dyn(.,<)=infty ISMM 2005

35 Theorem (ordered dynamics and separation)
Let G ≤ F (G being a minima extension of F). Let < be a minima ordering for F The map G is a separation of F if and only if, for each minimum X for F, we have Dyn(X; F, <) = Dyn(X; G, <) . ISMM 2005

36 Dynamics: counter-example
ISMM 2005

37 Ordered minima F ISMM 2005

38 Ordered minima F 2 3 ISMM 2005 1

39 Ordered minima F 2 3 ISMM 2005 1

40 Ordered minima F 2 3 ISMM 2005 1

41 Ordered minima G 2 3 ISMM 2005 1

42 Ordered minima F 1 2 ISMM 2005 3

43 Ordered minima F 1 2 ISMM 2005 3

44 Ordered minima F 1 2 ISMM 2005 3

45 Ordered minima G 1 2 ISMM 2005 3

46 Remark If all the minima of a function F are distinct and if the ordering of the minima of F is made according to the altitudes of the minima of F, then the ordered dynamics of a minimum is equal to the unordered dynamics of this minimum. ISMM 2005

47 A tree associated to F and <
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=0 F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

48 Theorem (minimum spanning tree)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F and <. Let G’ be the complete graph the vertices of which are the minima of F, an edge being labeled by the corresponding pass value. The tree T is a minimum spanning tree of G’. ISMM 2005

49 Conclusion ISMM 2005 Dyn > 22

50 Conclusion ISMM 2005 => Ordering the minima with arbitary criteria

51 Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005

52 Topological watershed
ISMM 2005

53 Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005

54 Components of the cross-sections
ISMM 2005 G

55 Components of the cross-sections
ISMM 2005 G

56 Components of the cross-sections
ISMM 2005 G

57 Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005

58 Components of the cross-sections
ISMM 2005

59 Components of the cross-sections
ISMM 2005

60 Components of the cross-sections
ISMM 2005

61 Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005

62 Thank you for your attention
ISMM 2005

63 Theorem (reconstruction from ordered pass values)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. ISMM 2005

64 Separation (sets) Let X be a subset of E and let x, y be in X. We say that x and y are separated for X if there is no path from x to y in X. Let X, Y be subsets of E such that Y is a subset of X. We say that Y is a separation of X if any x and y in X which are separated for X, are separated for Y. ISMM 2005

65 A subset X ISMM 2005

66 A separation ISMM 2005

67 Separation (maps) We denote by Func (V) the family composed of all maps from V to Z. Let F  Func (V), we set Fk = {x  V; F(x)  k}, Fk is the cross-section of F at level k Let F and G be both in Func(V) and such that G ≤ F. We say that G is a separation of F if, for any k, G[k] is a separation of F[k]. ISMM 2005

68 Strong separation F ISMM 2005 G

69 Discrete sets and destructible points
Let G = (V,E) be a (undirected) graph and let X be a subset of V. We say that a point x  X is destructible for X if x is adjacent to exactly one connected component of X. M. Couprie and G. Bertrand (1997) Watersheds ISMM 2005

70 Theorem (restriction to minima)
Let F and G be in F (V) such that G  F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). ISMM 2005

71 Theorem (strong separation)
Let F and G be in F (V) such that G  F. The map G is a strong separation of F if and only if G is a W-thinning of F. ISMM 2005

72 Theorem (confluence) Let G be a W-thinning of F. If H is a W-thinning of F such that H >= G, then G is a W-thinning of H ISMM 2005

73 Strong separation F ISMM 2005 G is a strong separation of F G

74 Strong separation F destructible points may be lowered with an arbitrary order ISMM 2005 G

75 Theorem (restriction to minima)
Let F and G be in F (V) such that G  F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). ISMM 2005

76 Theorem (restriction to minima)
Let F and G be in F (V) such that G  F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). Is it possible to reduce the amount of information necessary to ‘‘encode’’ the  topology of a W-thinning? ISMM 2005

77 Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. ISMM 2005

78 Theorem (ordered minima)
Let F and G be in F (V) such that G <= F and let < be a minima ordering for F. The map G is a separation of F if and only if, for each minimum X for F, we have F(X,<) = G(X,<). ISMM 2005

79 Theorem (reconstruction from ordered pass values)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. ISMM 2005

80 Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) This new definition of dynamics fully agrees with the notion of separation. ISMM 2005

81 Segmentation ISMM 2005

82 ISMM 2005

83 Watershed ISMM 2005

84 Segmentation based on dynamics
ISMM 2005

85 Segmentation based on dynamics
ISMM 2005

86 Minima ordering 10 9 8 6 7 5 2 1 3 4 ISMM 2005

87 Dynamics 10 9 8 6 7 5 2 1 3 4 ISMM 2005

88 Dynamics 10 9 8 6 7 5 2 1 3 4 ISMM 2005

89 Dynamics 6 1 3 ISMM 2005

90 Dynamics 6 1 3 ISMM 2005

91 Geodesic reconstruction
6 1 3 ISMM 2005

92 Watershed 6 1 3 ISMM 2005

93 ISMM 2005

94 ISMM 2005

95 Watershed ISMM 2005

96 ISMM 2005

97 Dyn > 9 ISMM 2005

98 Dyn > 9 ISMM 2005

99 Dyn > 22 ISMM 2005

100 Dyn > 22 ISMM 2005

101 ‘Duality’ Let (V,E) be a connected graph and let E’ be a subset of E. We say that an edge u = {x,y} in E’ is destructible (for E’) if x and y belong to the same connected component of (V, E’\{u}) ISMM 2005

102 Homotopy: an illustration
F(x,y) G(x,y) F1 G1 x x ISMM 2005

103 Homotopy: an illustration
F(x,y) G(x,y) x x F2 G2 F1 G1 ISMM 2005

104 Watershed transform ISMM 2005

105 k-separation y x x and y are 8-separated ISMM 2005 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

106 x and y are NOT separated (they are linked)
k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005

107 Pass value 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 8 3 10 5 25 5 20 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 30 31 40 6 6 40 6 11 11 11 25 4 4 4 40 31 30 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005 31

108 ISMM 2005

109 ISMM 2005

110 ISMM 2005

111 Cross-sections, components
ISMM 2005

112 Cross-sections, components
ISMM 2005


Download ppt "A new definition for the dynamics"

Similar presentations


Ads by Google