Download presentation
Presentation is loading. Please wait.
1
A new definition for the dynamics
G. Bertrand Laboratoire A2SI, ESIEE Institut Gaspard Monge – UMR UMLV/ESIEE/CNRS ISMM 2005
2
A discrete approach Let G = (V,E) be an (undirected) graph.
We denote by Func (V) the family composed of all maps from V to Z. ISMM 2005
3
Pass value Let F be in Func (V). If п is a path, we set F(п) = Max{F(x); x п}. Let x, y in V. We set F(x,y) = Min {F(п); п п(x,y)}, F(x,y) is the pass value between x and y. Let X and Y be two subsets of V. We set F(X,Y) = Min{F(x,y); x X and y Y}. ISMM 2005
4
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
5
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
6
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
7
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005 F(X,Y) = 31
8
Dynamics (M. Grimaud,1992) Let X be a minimum for F Let G(X) be the number such that: i) if X = Xmin, then G(X) = infinity; ii) otherwise, G(X) = Min {F(X,Y); for all minima Y such that F(Y) < F(X)}. The dynamics of a minimum X is the number Dyn(X) = G(X) – F(X) ISMM 2005
9
Dynamics ISMM 2005
10
Dynamics ∞ ISMM 2005
11
Dynamics ∞ ISMM 2005
12
Dynamics ∞ ISMM 2005
13
Dynamics ∞ ISMM 2005
14
Dynamics ∞ ISMM 2005
15
Dynamics ∞ ISMM 2005
16
k-Separation Let F be in Func (V) and let x and y be in V We say that x and y are separated (for F) if F(x,y) > Max{F(x),F(y)}. We say that x and y are k-separated (for F) if x and y are separated and F(x,y) = k. ISMM 2005
17
x and y are not separated
k-separation x and y are not separated 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
18
k-separation y x x and y are 20-separated ISMM 2005 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
19
Separation Let F and G be in Func (V) such that G F. We say that G is a separation of F if, for all x,y in V, if x and y are k-separated for F, then x and y are k-separated for G. ISMM 2005
20
Separation F ISMM 2005 G
21
Separation F ISMM 2005 G
22
Separation F K ISMM 2005 G
23
Separation F ISMM 2005 G
24
Separation F K ISMM 2005 G
25
Separation F K ISMM 2005 G is a separation of F G
26
Dynamics and separation
Let G ≤ F (G being a minima extension of F) If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F ISMM 2005
27
Dynamics and separation
Let G ≤ F (G being a minima extension of F). If G is a separation of F, then the dynamics of a minimum of G is the same than the dynamics of the corresponding minimum of F. The converse is not true ISMM 2005
28
Dynamics: counter-example
F ∞ ISMM 2005
29
Dynamics: counter-example
G ∞ ISMM 2005
30
Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. ISMM 2005
31
Ordered minima 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
32
Ordered minima F(.,<)=8 5 3 2 F(.,<)=20 F(.,<)=30 1 4
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=infty F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
33
Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) ISMM 2005
34
Ordered minima Dyn(.,<)=8-5 5 3 2 Dyn(.,<)=20-0 Dyn(.,<)=30-2
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 Dyn(.,<)=20-0 40 6 6 40 6 11 11 11 25 4 4 4 40 Dyn(.,<)=30-2 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 Dyn(.,<)=31-3 40 40 40 40 40 40 40 40 40 40 40 40 40 Dyn(.,<)=infty ISMM 2005
35
Theorem (ordered dynamics and separation)
Let G ≤ F (G being a minima extension of F). Let < be a minima ordering for F The map G is a separation of F if and only if, for each minimum X for F, we have Dyn(X; F, <) = Dyn(X; G, <) . ISMM 2005
36
Dynamics: counter-example
∞ ISMM 2005
37
Ordered minima F ISMM 2005
38
Ordered minima F 2 3 ISMM 2005 1
39
Ordered minima ∞ F 2 3 ISMM 2005 1
40
Ordered minima ∞ F 2 3 ISMM 2005 1
41
Ordered minima ∞ G 2 3 ISMM 2005 1
42
Ordered minima F 1 2 ISMM 2005 3
43
Ordered minima ∞ F 1 2 ISMM 2005 3
44
Ordered minima ∞ F 1 2 ISMM 2005 3
45
Ordered minima ∞ G 1 2 ISMM 2005 3
46
Remark If all the minima of a function F are distinct and if the ordering of the minima of F is made according to the altitudes of the minima of F, then the ordered dynamics of a minimum is equal to the unordered dynamics of this minimum. ISMM 2005
47
A tree associated to F and <
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=20 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=0 F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
48
Theorem (minimum spanning tree)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F and <. Let G’ be the complete graph the vertices of which are the minima of F, an edge being labeled by the corresponding pass value. The tree T is a minimum spanning tree of G’. ISMM 2005
49
Conclusion ISMM 2005 Dyn > 22
50
Conclusion ISMM 2005 => Ordering the minima with arbitary criteria
51
Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005
52
Topological watershed
ISMM 2005
53
Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005
54
Components of the cross-sections
ISMM 2005 G
55
Components of the cross-sections
ISMM 2005 G
56
Components of the cross-sections
ISMM 2005 G
57
Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005
58
Components of the cross-sections
ISMM 2005
59
Components of the cross-sections
ISMM 2005
60
Components of the cross-sections
ISMM 2005
61
Conclusion Preservation of the dynamics
Equivalence between : Preservation of the dynamics Preservation of the contrast (separation) Preservation of an optimal spanning tree Preservation of the crests (topological watersheds) Preservation of the components of the cross-sections (extension) Preservation of the component tree ISMM 2005
62
Thank you for your attention
ISMM 2005
63
Theorem (reconstruction from ordered pass values)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. ISMM 2005
64
Separation (sets) Let X be a subset of E and let x, y be in X. We say that x and y are separated for X if there is no path from x to y in X. Let X, Y be subsets of E such that Y is a subset of X. We say that Y is a separation of X if any x and y in X which are separated for X, are separated for Y. ISMM 2005
65
A subset X ISMM 2005
66
A separation ISMM 2005
67
Separation (maps) We denote by Func (V) the family composed of all maps from V to Z. Let F Func (V), we set Fk = {x V; F(x) k}, Fk is the cross-section of F at level k Let F and G be both in Func(V) and such that G ≤ F. We say that G is a separation of F if, for any k, G[k] is a separation of F[k]. ISMM 2005
68
Strong separation F ISMM 2005 G
69
Discrete sets and destructible points
Let G = (V,E) be a (undirected) graph and let X be a subset of V. We say that a point x X is destructible for X if x is adjacent to exactly one connected component of X. M. Couprie and G. Bertrand (1997) Watersheds ISMM 2005
70
Theorem (restriction to minima)
Let F and G be in F (V) such that G F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). ISMM 2005
71
Theorem (strong separation)
Let F and G be in F (V) such that G F. The map G is a strong separation of F if and only if G is a W-thinning of F. ISMM 2005
72
Theorem (confluence) Let G be a W-thinning of F. If H is a W-thinning of F such that H >= G, then G is a W-thinning of H ISMM 2005
73
Strong separation F ISMM 2005 G is a strong separation of F G
74
Strong separation F destructible points may be lowered with an arbitrary order ISMM 2005 G
75
Theorem (restriction to minima)
Let F and G be in F (V) such that G F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). ISMM 2005
76
Theorem (restriction to minima)
Let F and G be in F (V) such that G F. The map G is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = G(X,Y). Is it possible to reduce the amount of information necessary to ‘‘encode’’ the topology of a W-thinning? ISMM 2005
77
Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. ISMM 2005
78
Theorem (ordered minima)
Let F and G be in F (V) such that G <= F and let < be a minima ordering for F. The map G is a separation of F if and only if, for each minimum X for F, we have F(X,<) = G(X,<). ISMM 2005
79
Theorem (reconstruction from ordered pass values)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. ISMM 2005
80
Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) This new definition of dynamics fully agrees with the notion of separation. ISMM 2005
81
Segmentation ISMM 2005
82
ISMM 2005
83
Watershed ISMM 2005
84
Segmentation based on dynamics
ISMM 2005
85
Segmentation based on dynamics
ISMM 2005
86
Minima ordering 10 9 8 6 7 5 2 1 3 4 ISMM 2005
87
Dynamics 10 9 8 6 7 5 2 1 3 4 ISMM 2005
88
Dynamics 10 9 8 6 7 5 2 1 3 4 ISMM 2005
89
Dynamics 6 1 3 ISMM 2005
90
Dynamics 6 1 3 ISMM 2005
91
Geodesic reconstruction
6 1 3 ISMM 2005
92
Watershed 6 1 3 ISMM 2005
93
ISMM 2005
94
ISMM 2005
95
Watershed ISMM 2005
96
ISMM 2005
97
Dyn > 9 ISMM 2005
98
Dyn > 9 ISMM 2005
99
Dyn > 22 ISMM 2005
100
Dyn > 22 ISMM 2005
101
‘Duality’ Let (V,E) be a connected graph and let E’ be a subset of E. We say that an edge u = {x,y} in E’ is destructible (for E’) if x and y belong to the same connected component of (V, E’\{u}) ISMM 2005
102
Homotopy: an illustration
F(x,y) G(x,y) F1 G1 x x ISMM 2005
103
Homotopy: an illustration
F(x,y) G(x,y) x x F2 G2 F1 G1 ISMM 2005
104
Watershed transform ISMM 2005
105
k-separation y x x and y are 8-separated ISMM 2005 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
106
x and y are NOT separated (they are linked)
k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005
107
Pass value 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 8 3 10 5 25 5 20 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 30 31 40 6 6 40 6 11 11 11 25 4 4 4 40 31 30 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 ISMM 2005 31
108
ISMM 2005
109
ISMM 2005
110
ISMM 2005
111
Cross-sections, components
ISMM 2005
112
Cross-sections, components
ISMM 2005
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.