Presentation is loading. Please wait.

Presentation is loading. Please wait.

Parallel lines and Transversals

Similar presentations


Presentation on theme: "Parallel lines and Transversals"β€” Presentation transcript:

1 Parallel lines and Transversals
Concept 18 Parallel lines and Transversals

2 Corresponding Angles Postulate
If _______ parallel lines are cut by a ________________ then each pair of ________________ angles are ___________. two transversal corresponding congruent

3 Given: π‘šβˆ 11=34Β° Prove: π‘šβˆ 15=34Β° 1. 2. 3. 4. π‘šβˆ 11=34Β° Given
Statements Reasons 1. 2. 3. 4. π‘šβˆ 11=34Β° Given ∠11β‰…βˆ 15 Cooresponding ∠ Post. Def. of Congruent ∠ π‘šβˆ 11=π‘šβˆ 15 π‘šβˆ 15=34Β° Substitution Prop.

4 1. 2. 3. 4. 5. 6. Given: 𝑝 || π‘ž, π‘šβˆ 11=51Β° Prove: π‘šβˆ 16=51Β° Statements
Reasons 1. 2. 3. 4. 5. 6. 7. 𝑝 || π‘ž Given π‘šβˆ 11=51Β° Given Cooresponding ∠ Post. ∠11β‰…βˆ 15 ∠15β‰…βˆ 16 Vertical Angles Thm. Transitive Prop. ∠11β‰…βˆ 16 π‘šβˆ 11=π‘šβˆ 16 Def. of Cong. Segments π‘šβˆ 16=51Β° Substitution Prop.

5 Given: l || m Prove: ∠3 β‰Œ ∠7 Alternate Interior Angles Theorem
Statements Reasons 1. 2. 3. 4. 𝑙 || π‘š Given ∠3β‰…βˆ 5 Cooresponding ∠ Post. ∠5β‰…βˆ 7 Vertical Angles Thm. ∠3β‰…βˆ 7 Transitive Prop. Alternate Interior Angles Theorem If _______ parallel lines are cut by a ________________ then each pair of ______________________ angles are _____________. two transversal alternate interior congruent

6 Given: j || k, m∠1=126Β°, π‘šβˆ 7=7(π‘₯ βˆ’7) Prove: x = 25
Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. j || π‘˜ Given ∠7β‰…βˆ 1 Cooresponding ∠ Post. π‘šβˆ 7=π‘šβˆ 1 Def. of Congruent Angles π‘šβˆ 1=126, π‘šβˆ 7=7(π‘₯βˆ’7) Givens 7(π‘₯βˆ’7)=126 Substitution Prop. 7π‘₯βˆ’49=126 Distributive Prop. 7π‘₯=175 Addition Prop. π‘₯=25 Division Prop

7 Alternate Exterior Angles Theorem
Given: j || k Prove: ∠1 β‰…βˆ 2 Statements Reasons 1. 2. 3. 4. j || π‘˜ Given ∠1β‰…βˆ 3 Cooresponding ∠ Post. ∠3β‰…βˆ 2 Vertical Angles Thm. Transitive Prop. ∠1β‰…βˆ 2 Alternate Exterior Angles Theorem If _______ parallel lines are cut by a ________________ then each pair of ___________________ angles are ____________. two transversal alternate exterior congruent

8 1. 2. 3. 4. 5. Given: l || m, p || q Prove: ∠1 β‰Œ ∠3 Statements Reasons
∠1β‰…βˆ 2 Alt. Ext. Angles Thm. 𝑝 || π‘ž Given Corresponding Angles Post. ∠2β‰…βˆ 3 ∠1β‰…βˆ 3 Transitive Prop.

9 Prove: ∠1 and ∠2 are supplementary Statements Reasons 1. 2. 3. 4. 5.
Given: j || k Prove: ∠1 and ∠2 are supplementary Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. j || π‘˜ Given ∠1β‰…βˆ 3 Cooresponding ∠ Post. π‘šβˆ 1=π‘šβˆ 3 Def. of Congruent Angles ∠2 π‘Žπ‘›π‘‘ ∠3 form a linear pair Def. of Linear Pair/Given ∠2 π‘Žπ‘›π‘‘ ∠3 are supplementary Linear Pair Thm π‘šβˆ 2+π‘šβˆ 3=180 Def. of Supplementary π‘šβˆ 2+π‘šβˆ 1=180 Substitution Prop. ∠1 π‘Žπ‘›π‘‘ ∠2 are supplementary Def of Supplementary.

10 Same Side Interior Angle Theorem
If _______ parallel lines are cut by a ______________ then each pair of ___________________________ angles are __________________. two transversal same side interior supplementary

11 Given: p || q Prove: x = 7 Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 𝑝 || π‘ž Given ∠2 π‘Žπ‘›π‘‘ ∠3 are supplementary Same Side Int. Angles Thm. π‘šβˆ 2+π‘šβˆ 3=180 Def. of Supplementary Angles ∠1β‰…βˆ 3 Vertical Angles Thm. π‘šβˆ 1=π‘šβˆ 3 Def. of Congruent Angles π‘šβˆ 2+π‘šβˆ 1=180 Substitution Property π‘šβˆ 1=94, π‘šβˆ 2=13π‘₯βˆ’5 Givens Substitution Property 13π‘₯βˆ’5+94=180 13π‘₯+89=180 Simplify 13π‘₯=91 Subtraction Prop. π‘₯=7 Division Prop

12 1. 2. 3. 4. 5. 6. 7. 8. Given: j || k Prove: ∠1 & ∠3 are supplementary
Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. j || π‘˜ Given ∠1β‰… ∠2 Corresponding Angles Post. π‘šβˆ 1=π‘š ∠2 Def. of Congruent Angles ∠2 π‘Žπ‘›π‘‘ ∠3 are a linear pair Def of Linear Pair/Given ∠2 π‘Žπ‘›π‘‘ ∠3 are supplementary Linear Pair Post. π‘šβˆ 2+π‘šβˆ 3=180 Definition of Supp. Angles π‘šβˆ 1+π‘šβˆ 3=180 Substitution Prop. ∠1 π‘Žπ‘›π‘‘ ∠3 are supplementary Def. of Supplementary

13 Same Side Exterior Angles Theorem
If _______ parallel lines are cut by a ________________ then each pair of ___________________________ angles are __________________. two transversal same side exterior supplementary

14 Given: p || q Prove: x = 23 Statements Reasons 1. 2. 3. 4. 5. 𝑝 || π‘ž
5π‘₯βˆ’24+89=180 Same Side Ext. Angle Thm 5π‘₯+65=180 Simplify 5π‘₯=115 Subtraction Property π‘₯=23 Division Prop

15 Given: p || q and p  r Prove: q  r 1. 2. 3. 4. 5. 6. 7. 8.
Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. 9. 𝑝 || π‘ž Given ∠1β‰… ∠2 Corresponding Angles Post. 𝑝 βŠ₯π‘Ÿ Given ∠2 is a right angle Def of perpendicular π‘šβˆ 2=90 Def of right angle π‘šβˆ 1=π‘šβˆ 2 Def. of Congruent Angles π‘šβˆ 1=90 Substitution Prop. ∠1 is a right angle Def. of Right angle π‘ž βŠ₯π‘Ÿ Def. of perpendicular

16 Perpendicular Transversal Theorem
If two parallel lines are cut by a transversal and one line is perpendicular to the transversal, then the other line is perpendicular to the transversal.

17 Prove: ∠C is a right angle 1. 2. 3. 4.
Given: 𝐴𝐡 || 𝐷𝐢 , 𝐴𝐡 βŠ₯ 𝐡𝐢 Prove: ∠C is a right angle Statements Reasons 1. 2. 3. 4. 𝐴𝐡 || 𝐷𝐢 Given 𝐴𝐡 βŠ₯ 𝐡𝐢 Given 𝐷𝐢 βŠ₯ 𝐡𝐢 Perp. Transversal Thm. Def. of perpendicular ∠C is a right angle

18 Find the measure of each angle.
Given: 𝑃𝑄 || 𝑅𝑆 , 𝐿𝑀 βŠ₯ 𝑁𝐾 Find the measure of each angle. π‘šβˆ 1= 35Β° π‘šβˆ 2= 180 βˆ’35 =145Β° π‘šβˆ 3= 35Β° 125Β° π‘šβˆ 4= 90 βˆ’55 =35Β° π‘šβˆ 5= 55Β° π‘šβˆ 6= 180 βˆ’125 =55Β° π‘šβˆ 7= 125Β°

19 Given: 𝐴𝐡 || 𝐢𝐷 , 𝐴𝐢 || 𝐷𝐹 , 𝐢𝐷 || 𝐸𝐹 Prove: βˆ π΅π΄πΆβ‰…βˆ πΈπΉπ·
Statements Reasons 1. 2. 3. 4. 5. 6. 7. 8. 𝐴𝐡 || 𝐢𝐷 Given βˆ π΅π΄πΆβ‰… ∠𝐷𝐢𝐴 Alt. Int. Angles Thm. 𝐴𝐢 || 𝐷𝐹 Given βˆ π·πΆπ΄β‰… ∠CDF Alt. Int. Angles Thm. βˆ π΅π΄πΆβ‰… ∠CDF Transitive Prop. 𝐢𝐷 || 𝐸𝐹 Given βˆ πΆπ·πΉβ‰… ∠EFD Alt. Int. Angles Thm. βˆ π΅π΄πΆβ‰… ∠EFD Transitive Prop.

20 In the figure, m∠9 = 80 and m∠5 = 68. Find the measure of each angle.
1. ∠12 = ∠1 = 3. ∠4 = ∠3 = 5. ∠7 = ∠16 = 180 – 80 80 = 100 80 100 80 68 68 180 – 68 = 112

21 7. In the figure, m11 = 51. Find m15.
9. If m2 = 125, find m3. 10. Find m4. π’Žβˆ πŸπŸ“=πŸ“πŸΒ° π’Žβˆ πŸ‘=πŸπŸπŸ“Β° 8. Find m16. π’Žβˆ πŸπŸ’=πŸπŸ–πŸŽβˆ’πŸπŸπŸ“Β° π’Žβˆ πŸπŸ”=πŸ“πŸΒ° =πŸ“πŸ“Β°

22 11. If m5 = 2x – 10, and m7 = x + 15, find x.
12. If m4 = 4(y – 25), and m8 = 4y, find y. π’Žβˆ πŸ“=π’Žβˆ πŸ• πŸπ’™βˆ’πŸπŸŽ=𝒙+πŸπŸ“ π’™βˆ’πŸπŸŽ=πŸπŸ“ 𝒙=πŸπŸ“ π’Žβˆ πŸ’+π’Žβˆ πŸ–=πŸπŸ–πŸŽ 4 π’šβˆ’πŸπŸ“ +πŸ’π’š=πŸπŸ–πŸŽ πŸ’π’šβˆ’πŸπŸŽπŸŽ+πŸ’π’š=πŸπŸ–πŸŽ πŸ–π’šβˆ’πŸπŸŽπŸŽ=πŸπŸ–πŸŽ πŸ–π’š=πŸπŸ–πŸŽ π’š=πŸ‘πŸ“

23 If m1 = 9x + 6 and m2 = 2(5x – 3) find x.
14. m3 = 5y + 14 to find y. π’Žβˆ πŸ=π’Žβˆ πŸ πŸ—π’™+πŸ”=𝟐(πŸ“π’™βˆ’πŸ‘) πŸ—π’™+πŸ”=πŸπŸŽπ’™βˆ’πŸ” πŸ”=π’™βˆ’πŸ” 12=𝒙 π’Žβˆ πŸ=π’Žβˆ πŸ‘ 𝟐 πŸ“π’™βˆ’πŸ‘ =πŸ“π’š+πŸπŸ’ 𝟐 πŸ“π’™βˆ’πŸ‘ =πŸπŸŽπ’™βˆ’πŸ” πŸπŸπŸ’=πŸ“π’š+πŸπŸ’ =𝟏𝟎(𝟏𝟐)βˆ’πŸ” 𝟏𝟎𝟎=πŸ“π’š =πŸπŸπŸŽβˆ’πŸ” 𝟐𝟎=π’š =πŸπŸπŸ’

24 Find the value of the variable(s) in each figure
Find the value of the variable(s) in each figure. Explain your reasoning. 106 =πŸ‘πŸŽ πŸπ’™+πŸ—πŸŽ+𝒙=πŸπŸ–πŸŽ πŸ‘π’™+πŸ—πŸŽ=πŸπŸ–πŸŽ 𝒙+πŸπŸŽπŸ”=πŸπŸ–πŸŽ πŸ’π’›+πŸ”=πŸπŸŽπŸ” πŸ‘π’™=πŸ—πŸŽ 𝒙=πŸ•πŸ’ πŸ’π’›=𝟏𝟎𝟎 𝒙=πŸ‘πŸŽ 𝒛=πŸπŸ“ πŸπ’š+πŸπŸŽπŸ”=πŸπŸ–πŸŽ πŸ‘πŸŽ+𝒛=πŸπŸ–πŸŽ πŸπ’š=πŸ‘πŸŽ πŸπ’š=πŸ•πŸ’ π’š=πŸ‘πŸ• 𝒛=πŸπŸ“πŸŽ π’š=πŸπŸ“

25 Proving Lines are parallel
Concept 19

26 Corresponding Angles Converse Postulate
Same Side Interior Angles Converse Theorem Alternate Interior Angles Converse Theorem Alternate Exterior Angles Converse Theorem If two lines are cut by a transversal and corresponding angles (angles that have corresponding positions) are congruent, then the lines are parallel.

27 Is it possible to prove that line p and q are parallel
Is it possible to prove that line p and q are parallel? If so explain how. Yes, because 70 =70 and the Corresponding Angles Converse Post.

28 Given: ∠1 β‰Œ ∠2 Prove: l || m ∠3β‰… ∠1 Vertical Angles Thm Given ∠1β‰… ∠2 ∠3β‰… ∠2 Transitive Prop. 𝑙 || π‘š Corresponding Angles Converse Postulate

29 Corresponding Angles Converse Postulate
Same Side Interior Angles Converse Theorem Alternate Interior Angles Converse Theorem Alternate Exterior Angles Converse Theorem If two lines are cut by a transversal and same side interior angles (angles that lie between the two lines and are on the same side of the transversal) are supplementary, then the lines are parallel If two lines are cut by a transversal and corresponding angles (angles that have corresponding positions) are congruent, then the lines are parallel.

30 Is it possible to prove that line p and q are parallel
Is it possible to prove that line p and q are parallel? If so explain how. NO, because using vertical angles the 75 would then make a same side interior angle pair with the = 190 and Same Side Interior Angles Converse Thm says they should add to 180.

31 Given: m∠1= 135, m∠4 = 45 Prove: n || o 1. 1. 2. 2. 3. 3. 4. 4. 5. 5.
6. 7. π‘šβˆ 1=135 Givens π‘šβˆ 4=45 Addition Prop. π‘šβˆ 1+ ∠4=180 Vertical Angles Thm ∠1β‰… ∠2 π‘šβˆ 1=π‘š ∠2 Def. of Congruent Angles Substitution Prop. π‘šβˆ 2+ ∠4=180 ∠2 & ∠4 are supp. Def of supp. 𝑝 || π‘ž Same Side Interior Angles Converse Theorem

32 Corresponding Angles Converse Postulate
Same Side Interior Angles Converse Theorem Alternate Interior Angles Converse Theorem Alternate Exterior Angles Converse Theorem If two lines are cut by a transversal and same side interior angles (angles that lie between the two lines and are on the same side of the transversal) are supplementary, then the lines are parallel If two lines are cut by a transversal and corresponding angles (angles that have corresponding positions) are congruent, then the lines are parallel. If two lines are cut by a transversal and alternate interior angles (angles that lie between the two lines and on opposite sides of the transversal) are congruent, then the lines are parallel.

33 Is it possible to prove that line p and q are parallel
Is it possible to prove that line p and q are parallel? If so explain how. Yes, because 115 =115 and the Alternate Interior Angles Converse Thm.

34 Given: ∠1 β‰Œ ∠2 Prove: l || m ∠3β‰… ∠1 Vertical Angles Thm Given ∠1β‰… ∠2 ∠3β‰… ∠2 Transitive Prop. l || m Alternate Interior Angles Converse Thm.

35 Corresponding Angles Converse Postulate
Same Side Interior Angles Converse Theorem Alternate Interior Angles Converse Theorem Alternate Exterior Angles Converse Theorem If two lines are cut by a transversal and same side interior angles (angles that lie between the two lines and are on the same side of the transversal) are supplementary, then the lines are parallel If two lines are cut by a transversal and corresponding angles (angles that have corresponding positions) are congruent, then the lines are parallel. If two lines are cut by a transversal and alternate interior angles (angles that lie between the two lines and on opposite sides of the transversal) are congruent, then the lines are parallel. If two lines are cut by a transversal and alternate exterior angles (angles that lie outside the two lines and on opposite sides of the transversal) are congruent, then the lines are parallel.

36 Is it possible to prove that line p and q are parallel
Is it possible to prove that line p and q are parallel? If so explain how. Yes, because 75 =75 and the Alternate Exterior Angles Converse Thm.

37 Given: ∠3 β‰Œ ∠2 Prove: l || m Vertical Angles Thm ∠1β‰… ∠3 ∠3β‰… ∠2 Given ∠1β‰… ∠2 Transitive Prop. 𝑙 || π‘š Alternate Exterior Angles Converse Thm.


Download ppt "Parallel lines and Transversals"

Similar presentations


Ads by Google