Presentation is loading. Please wait.

Presentation is loading. Please wait.

Review of Coherent Noise Suppression Methods

Similar presentations


Presentation on theme: "Review of Coherent Noise Suppression Methods"— Presentation transcript:

1 Review of Coherent Noise Suppression Methods
Gerard T. Schuster University of Utah

2 Problem: Ground Roll Degrades Signal
Offset (ft) 2000 3500 Reflections Time (sec) Ground Roll 2.5

3 Problem: PS Waves Degrade Signal
Time (sec) Reflections Converted S Waves 4.0

4 Problem: Tubes Waves Obscure PP
2000 Depth (ft) 3100 Reflections Time (sec) Reflections Time (s) Aliased tube waves Converted S Waves 0.14 4.0

5 Problem: Out-of-Plane Ground Roll

6 Outline Coherent Filtering Methods ARCO Field Data Results
Multicomponent Data Example Conclusion and Discussion

7 Traditional Filtering Methods
F-K Dip Filtering Filtering in  - p domain linear  - p parabolic  - p hyperbolic  - p Least Squares Migration Filter

8 SIGNAL SIGNAL NOISE NOISE Separation Principle: Exploit Differences in
Moveout & Part. Velocity Directions SIGNAL Overlap Signal & Noise SIGNAL NOISE Transform Time Frequency NOISE Distance Wavenumber

9 Tau-P Transform Sum Transform Time Tau Distance P

10 Tau-P Transform Tau-P Transform
Time Tau Distance P

11 Tau-P Transform Tau-P Transform
Mute Noise Transform Time Tau Distance P

12 Separation Signal/Noise
Tau-P Transform Problem: Indistinct Separation Signal/Noise Transform Time Tau Distance P

13 Hyperbolic Transform Tau-P Transform
Time Tau Distinct Separation Signal/Noise Distance P

14 Breakdown of Hyperbolic
Assumption * v v v v v v v v v Irregular Moveout B Time A Distance

15 Filtering by Parabolic - p
Time Time Signal/Noise Overlap A Distance p

16 d = L m d d = L m + L m Filtering by LSMF Invert for m & m s Kirchhoff
p s Kirchhoff Modeler P-reflectivity d = L m p d d = L m + L m s PP Time PS Distance

17 Filtering by LSMF L -1 s PP Time Z L -1 p PS Distance X M1 M2

18 Find m by conjugate gradient
LSMF Method d = L m + L m s p 1. data unknowns 2. Find m by conjugate gradient p d = L m p 3. Model Coherent Signal

19 Multicomponent Filtering by LSMF
PS PP PS PP Time Z s d = L m + L m p x z Distance

20 Summary Traditional coherent filtering based on approximate moveout
LSMF filtering operators based on actual physics separating signal & noise Better physics --> Better focusing, more $$$

21 Outline Coherent Filtering Methods ARCO Surface Wave Data
Multicomponent Data Example Conclusion and Discussion

22 ARCO Field Data Offset (ft) 2000 3500 Time (sec) 2.5

23 LSM Filtered Data (V. Const.)
ARCO Field Data LSM Filtered Data (V. Const.) Offset (ft) 2000 3500 Time (sec) 2.5

24 F-K Filtered Data (13333ft/s)
LSM Filtered Data (V. Const.) Offset (ft) 2000 3500 Time (sec) 2.5

25 F-X Spectrum of ARCO Data
S. of LSM Filtered Data (V. Const) S. of F-K Filtered Data (13333ft/s) Offset (ft) 2000 3500 Frequency (Hz) 50

26 Outline Coherent Filtering Methods ARCO Field Data Results
Multicomponent Data Example Graben Example Mahogony Example Conclusion and Discussion

27 Graben Velocity Model X (m) 5000 V1=2000 m/s V2=2700 m/s V3=3800 m/s
5000 V1=2000 m/s V2=2700 m/s V3=3800 m/s Depth (m) V4=4000 m/s V5=4500 m/s 3000

28 Synthetic Data Horizontal Component Vertical Component Offset (m)
5000 5000 PP1 PP2 PP3 PP4 PP1 PP2 PP3 PP4 Time (s) 1.4 Horizontal Component Vertical Component

29 LSMF Separation Horizontal Component Vertical Component Time (s)
Offset (m) 5000 Offset (m) 5000 PP1 PP2 PP3 PP4 Time (s) 1.4 Horizontal Component Vertical Component

30 True P-P and P-SV Reflection
Offset (m) 5000 Offset (m) 5000 Time (s) 1.4 Horizontal Component Vertical Component

31 F-K Filtering Separation
Offset (m) 5000 Offset (m) 5000 PP1 PP2 PP3 PP4 PP1 PP2 PP3 PP4 Time (s) 1.4 Horizontal Component Vertical Component

32 Outline Coherent Filtering Methods ARCO Field Data Results
Multicomponent Data Example Graben Example Mahogony Field Data Conclusion and Discussion

33 CRG1 Raw Data PS Time (s) 4 CRG1 (Vertical component)

34 CRG1 Data after Using F-K Filtering
PS Time (s) 4 CRG1 (Vertical component)

35 CRG1 Data after Using LSMF
PS Time (s) 4 CRG1 (Vertical component)

36 CRG2 Raw Data (vertical component)
Time (s) 4 CRG2 (Vertical component)

37 CRG2 Data after Using F-K Filtering (vertical component)
Time (s) 4 CRG2 (Vertical component)

38 CRG2 Data after Using LSMF (vertical component)
Time (s) 4 CRG2 (Vertical component)

39 Outline Coherent Filtering Methods ARCO Field Data Results
Multicomponent Data Example Conclusion and Discussion

40 Conclusions Filtering signal/noise using: moveout
difference & particle velocity direction - Traditional filtering $ vs $$$$ LSMF LSMF computes moveout and particle velocity direction based on true physics.


Download ppt "Review of Coherent Noise Suppression Methods"

Similar presentations


Ads by Google