Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometry Chapter 10 10-2: Find Arc Measures.

Similar presentations


Presentation on theme: "Geometry Chapter 10 10-2: Find Arc Measures."โ€” Presentation transcript:

1 Geometry Chapter 10 10-2: Find Arc Measures

2 Find Arc Measures Objective: Students will be able to use angle measures to find measures for arcs of circles. Agenda Central Angle Arcs Measures of Arcs Congruent Arcs

3 Angle in the Circle Central Angle: An angle with its vertex at the center of the circle, created by two radii. <๐‘จ๐‘ช๐‘ฉ is a central angle of ส˜ ๐‘ช. ๐‘ช ๐‘จ ๐‘ฉ

4 Angle in the Circle Arc: A portion of the circle connecting two points from the circle. ๐‘ช ๐‘จ ๐‘ฉ ๐‘จ๐‘ฉ is an arc of ส˜ ๐‘ช

5 Types of Arcs Minor Arc: The shortest arc connecting two points.

6 Arcs by Image Minor Arc Notation: ๐‘ซ๐‘ฌ

7 Types of Arcs Minor Arc: The shortest arc connecting two points.
Semicircle: An arc that connects two points on opposite sides of the circle (i.e. the points of the diameter).

8 Arcs by Image Minor Arc Semicircle Notation: ๐‘ซ๐‘ฌ Notation: ๐‘ญ๐‘ฎ๐‘ฏ

9 Types of Arcs Minor Arc: The shortest arc connecting two points.
Semicircle: An arc that connects two points on opposite sides of the circle (i.e. the points of the diameter). Major Arc: The longest arc connecting two points.

10 Arcs by Image Minor Arc Semicircle Major Arc ๐‘ซ๐‘ฌ ๐‘ญ๐‘ฎ๐‘ฏ ๐‘ฑ๐‘ฒ๐‘ณ Notation:

11 Example 1 ๐‘จ ๐‘ฉ ๐‘ถ ๐‘ช ๐‘ญ ๐‘ซ a.) ๐‘จ๐‘ฉ๐‘ซ b.) ๐‘จ๐‘ช c.) ๐‘จ๐‘ซ๐‘ฉ d.) ๐‘จ๐‘ญ๐‘ช
Identify the type of arc based off the picture and the notation. a.) ๐‘จ๐‘ฉ๐‘ซ b.) ๐‘จ๐‘ช c.) ๐‘จ๐‘ซ๐‘ฉ d.) ๐‘จ๐‘ญ๐‘ช ๐‘จ ๐‘ฉ ๐‘ถ ๐‘ซ ๐‘ช ๐‘ญ

12 Example 1 ๐‘จ ๐‘ฉ ๐‘ถ ๐‘ช ๐‘ญ ๐‘ซ a.) ๐‘จ๐‘ฉ๐‘ซ Semicircle b.) ๐‘จ๐‘ช Minor Arc
Identify the type of arc based off the picture and the notation. a.) ๐‘จ๐‘ฉ๐‘ซ Semicircle b.) ๐‘จ๐‘ช Minor Arc c.) ๐‘จ๐‘ซ๐‘ฉ Major Arc d.) ๐‘จ๐‘ญ๐‘ช Major Arc ๐‘จ ๐‘ฉ ๐‘ถ ๐‘ซ ๐‘ช ๐‘ญ

13 Measures of the Arcs The measure of a minor arc is equal to the measure of the central angle. The expression โ€œ๐’Ž ๐‘ซ๐‘ฌโ€ is read as โ€œthe measure of arc ๐ท๐ธโ€ Example ๐’Ž ๐‘ซ๐‘ฌ=๐Ÿ•๐ŸŽยฐ Rule: ๐‘ด๐’Š๐’๐’๐’“ ๐‘จ๐’“๐’„ ๐‘ด๐’†๐’‚๐’”๐’–๐’“๐’† = ๐‘ช๐’†๐’๐’•๐’“๐’‚๐’ ๐‘จ๐’๐’ˆ๐’๐’† ๐‘ด๐’†๐’‚๐’”๐’–๐’“๐’† 70ยฐ

14 Measures of the Arcs A semicircle always has a measure of 180ยฐ.
Example 180ยฐ ๐’Ž ๐‘ญ๐‘ฎ๐‘ฏ=๐Ÿ๐Ÿ–๐ŸŽยฐ Rule: ๐‘บ๐’†๐’Ž๐’Š๐’„๐’Š๐’“๐’„๐’๐’† ๐‘ด๐’†๐’‚๐’”๐’–๐’“๐’†=๐Ÿ๐Ÿ–๐ŸŽยฐ

15 Measures of the Arcs Example 300ยฐ ๐’Ž ๐‘ฑ๐‘ฒ๐‘ณ=๐Ÿ‘๐ŸŽ๐ŸŽยฐ Rule:
As a circle has a measure of 360ยฐ, then we can take the measure of a major arc by taking the difference between 360ยฐ and the measure of the related minor arc. Example 300ยฐ ๐’Ž ๐‘ฑ๐‘ฒ๐‘ณ=๐Ÿ‘๐ŸŽ๐ŸŽยฐ Rule: ๐‘ด๐’‚๐’‹๐’๐’“ ๐‘จ๐’“๐’„ ๐‘ด๐’†๐’‚๐’”๐’–๐’“๐’†=๐Ÿ‘๐Ÿ”๐ŸŽ โˆ’๐‘ด๐’Š๐’๐’๐’“ ๐‘จ๐’“๐’„ ๐‘ด๐’†๐’‚๐’”๐’–๐’“๐’†

16 Example 2 Find the measure of each arc listed from ส˜ ๐‘ท. a.) ๐‘น๐‘บ ๐‘น ๐‘ท ๐‘บ ๐‘ป
๐Ÿ๐Ÿ๐ŸŽยฐ b.) ๐‘น๐‘ป๐‘บ c.) ๐‘น๐‘บ๐‘ป d.) ๐‘ป๐‘บ

17 Example 2 Find the measure of each arc listed from ส˜ ๐‘ท. a.) ๐‘น๐‘บ ๐‘น
๐‘ป ๐‘…๐‘† is a minor arc, thus ๐’Ž ๐‘น๐‘บ=๐’Ž<๐‘น๐‘ท๐‘บ=๐Ÿ๐Ÿ๐ŸŽยฐ ๐Ÿ๐Ÿ๐ŸŽยฐ

18 Example 2 Find the measure of each arc listed from ส˜ ๐‘ท. b.) ๐‘น๐‘ป๐‘บ ๐‘น
๐‘…๐‘‡๐‘† is a major arc, thus ๐’Ž ๐‘น๐‘ป๐‘บ=๐Ÿ‘๐Ÿ”๐ŸŽยฐโˆ’๐Ÿ๐Ÿ๐ŸŽ=๐Ÿ๐Ÿ“๐ŸŽยฐ ๐Ÿ๐Ÿ๐ŸŽยฐ

19 Example 2 Find the measure of each arc listed from ส˜ ๐‘ท. c.) ๐‘น๐‘บ๐‘ป ๐‘น
๐‘…๐‘†๐‘‡ is a semicircle, thus ๐’Ž ๐‘น๐‘บ๐‘ป=๐Ÿ๐Ÿ–๐ŸŽยฐ ๐Ÿ๐Ÿ๐ŸŽยฐ

20 Example 2 Find the measure of each arc listed from ส˜ ๐‘ท. d.) ๐‘ป๐‘บ ๐‘น
๐‘‡๐‘† is a minor arc, thus ๐’Ž ๐‘ป๐‘บ=๐’Ž<๐‘ป๐‘ท๐‘บ=๐Ÿ•๐ŸŽยฐ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐Ÿ•๐ŸŽยฐ

21 Adding Arcs ๐’Ž ๐‘จ๐‘ฉ๐‘ช=๐’Ž ๐‘จ๐‘ฉ+๐’Ž ๐‘ฉ๐‘ช
Postulate 23 โ€“ Arc Addition Postulate: The measure of an arc formed by two adjacent arcs is the sum of the measure of those two arcs. ๐‘ช ๐‘จ ๐‘ฉ ๐’Ž ๐‘จ๐‘ฉ๐‘ช=๐’Ž ๐‘จ๐‘ฉ+๐’Ž ๐‘ฉ๐‘ช

22 Example 3 Identify the given arcs as major arc, minor arc, or semicircle, and find the measure of the arc. ๐‘ธ ๐‘น ๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐‘ป ๐Ÿ–๐ŸŽยฐ ๐Ÿ”๐ŸŽยฐ a.) ๐‘ป๐‘ธ b.) ๐‘ธ๐‘ป๐‘บ d.) ๐‘ธ๐‘น๐‘ป c.) ๐‘ป๐‘บ๐‘น

23 Example 3 Identify the given arcs as major arc, minor arc, or semicircle, and find the measure of the arc. ๐‘ธ ๐‘น ๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐‘ป ๐Ÿ–๐ŸŽยฐ ๐Ÿ”๐ŸŽยฐ a.) ๐‘ป๐‘ธ ๐‘‡๐‘„ is a minor arc, thus ๐’Ž ๐‘ป๐‘ธ=๐Ÿ๐Ÿ๐ŸŽยฐ

24 Example 3 Identify the given arcs as major arc, minor arc, or semicircle, and find the measure of the arc. ๐‘ธ ๐‘น ๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐‘ป ๐Ÿ–๐ŸŽยฐ ๐Ÿ”๐ŸŽยฐ b.) ๐‘ธ๐‘ป๐‘บ ๐‘„๐‘‡๐‘† is a major arc, thus ๐’Ž ๐‘ธ๐‘ป๐‘บ=๐’Ž ๐‘ธ๐‘ป+๐’Ž ๐‘ป๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ+๐Ÿ–๐ŸŽยฐ=๐Ÿ๐ŸŽ๐ŸŽยฐ

25 Example 3 Identify the given arcs as major arc, minor arc, or semicircle, and find the measure of the arc. c.) ๐‘ป๐‘บ๐‘น ๐‘ธ ๐‘น ๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐‘ป ๐Ÿ–๐ŸŽยฐ ๐Ÿ”๐ŸŽยฐ ๐‘‡๐‘†๐‘… is a semicircle, thus ๐’Ž ๐‘ป๐‘บ๐‘น=๐Ÿ๐Ÿ–๐ŸŽยฐ

26 Example 3 Identify the given arcs as major arc, minor arc, or semicircle, and find the measure of the arc. ๐‘ธ ๐‘น ๐‘บ ๐Ÿ๐Ÿ๐ŸŽยฐ ๐‘ป ๐Ÿ–๐ŸŽยฐ ๐Ÿ”๐ŸŽยฐ ๐Ÿ๐ŸŽ๐ŸŽยฐ d.) ๐‘ธ๐‘น๐‘ป ๐‘„๐‘…๐‘‡ is a major arc, thus ๐’Ž ๐‘ธ๐‘น๐‘ป=๐’Ž ๐‘ธ๐‘น+๐’Ž ๐‘น๐‘บ+๐’Ž ๐‘ป๐‘บ ๐Ÿ”๐ŸŽยฐ+๐Ÿ๐ŸŽ๐ŸŽยฐ+๐Ÿ–๐ŸŽยฐ=๐Ÿ๐Ÿ’๐ŸŽยฐ

27 Congruent Arcs Circles are congruent if they have the same radius.
Two arcs are congruent arcs if they have the same measure and they are arcs of the same circle, or if they are arcs of congruent circles.

28 Example 4 Determine if the red arcs are congruent. Explain why or why not. a.) ๐‘ซ ๐‘ฌ ๐‘ญ ๐‘ช ๐Ÿ–๐ŸŽยฐ

29 Example 4 Determine if the red arcs are congruent. Explain why or why not. a.) ๐‘ซ ๐‘ฌ ๐‘ญ ๐‘ช ๐Ÿ–๐ŸŽยฐ Yes; ๐‘ช๐‘ซ and ๐‘ฌ๐‘ญ are in the same circle, and ๐’Ž ๐‘ช๐‘ซ=๐’Ž ๐‘ฌ๐‘ญ

30 Example 4 Determine if the red arcs are congruent. Explain why or why not. b.) ๐‘ป ๐‘น ๐‘ผ ๐‘บ

31 Example 4 Determine if the red arcs are congruent. Explain why or why not. b.) ๐‘ป No; ๐’Ž ๐‘น๐‘บ=๐’Ž ๐‘ป๐‘ผ, but ๐‘น๐‘บ and ๐‘ป๐‘ผ are not in the same circle, nor are they in congruent circles. ๐‘น ๐‘ผ ๐‘บ

32 Example 4 Determine if the red arcs are congruent. Explain why or why not. c.) ๐‘ฟ ๐‘ฝ ๐Ÿ—๐Ÿ“ยฐ ๐’ ๐’€ ๐Ÿ—๐Ÿ“ยฐ

33 Example 4 Determine if the red arcs are congruent. Explain why or why not. c.) ๐‘ฟ ๐‘ฝ ๐Ÿ—๐Ÿ“ยฐ ๐’ ๐’€ ๐Ÿ—๐Ÿ“ยฐ Yes; ๐‘ฝ๐‘ฟ and ๐’€๐’ are in congruent circles, and ๐’Ž ๐‘ฝ๐‘ฟ=๐’Ž ๐’€๐’.


Download ppt "Geometry Chapter 10 10-2: Find Arc Measures."

Similar presentations


Ads by Google