Presentation is loading. Please wait.

Presentation is loading. Please wait.

IENG 362 Markov Chains.

Similar presentations


Presentation on theme: "IENG 362 Markov Chains."— Presentation transcript:

1 IENG 362 Markov Chains

2 Steady State Conditions
Proposition: For any irreducible ergodic M.C., lim Pij(n) exists and is independent of i. lim ( ) n ij j P = > p j i ij M P = å p j M = å p 1

3 Steady State Conditions
Heuristic p j n i M ij P X = å { } | ( )

4 Steady State Conditions
Now, P ij n ik k M kj ( ) + = å 1

5 Steady State Conditions
Now, P ij n ik k M kj ( ) + = å 1 Taking the limit as n p j k M kj P = å

6 å Example; Inventory p P = p 080 632 264 08 184 368 = + . P = 080 184
080 184 368 632 264 . p j k M kj P = å p 1 2 3 080 632 264 08 184 368 = + .

7 Example; Inventory p 1 2 3 080 632 264 08 184 368 = + . 1 2 3 = + p

8 Example; Inventory p 368 1 - = . ( ) p 582 = . p 080 632 264 08 184
1 2 3 080 632 264 08 184 368 = + . Choose p0 = 1 p 3 368 1 - = . ( ) p 3 582 = .

9 Example; Inventory p 080 632 264 08 184 368 = + . p 368 1 582 - = + .
1 2 3 080 632 264 08 184 368 = + . p0 = 1, p3 = 0.582 p 2 368 1 582 - = + . ( ) p 2 9212 = .

10 Example; Inventory p 080 632 264 08 184 368 = + . p 368 184 582 - = +
1 2 3 080 632 264 08 184 368 = + . p0 = 1, p3 = 0.582, p2 = p 1 368 184 582 - = + . ( ) (.9212) ) p 1 1.0 = .

11 Example; Inventory p 1 2 3 000 921 582 503 = å .

12 å Example; Inventory p 000 921 582 503 = . p 503 285 263 166 / . Þ = 1
1 2 3 000 921 582 503 = å . p 1 2 3 503 285 263 166 / . Þ =

13 Example; Inventory p 1 2 3 285 263 166 . = j i ij M P = å p 1

14 Example; Inventory å p 285 263 166 . = P p 1 lim P = > p P . 286
1 2 3 285 263 166 . = j i ij M P = å p 1 P ( ) . 16 286 263 166 = lim ( ) n ij j P = > p

15 Special Cases lim P d = m p
Irreducible positive recurrent periodic Markov Chain, period = d lim ( ) n jj nd j P d = m p

16 Special Cases Ex: 1 = P If we start in state 0, P does not exist , .
00 1 2 3 4 ( ) , . lim = Ex: 1 P = 1 1 1

17 Special Cases Ex: lim P = 1 p = 1 2 p 1 = P However, 1 1 1 ( ) n jj j
= 2 1 p j = 1 2 p Ex: 1 P = 1 1 1

18 { Cost Functions in M.C. C X ( ) , = 2 1 4 6 3
Suppose C(Xt) = cost of being in state Xt. In our inventory example, suppose it costs $2 / unit for each time period inventory is carried over. Then C X t ( ) , = 2 1 4 6 3 {

19 å Cost Functions ] [ E n C X ( ) 1
In general, the expected cost over all states and n time periods then is given by E n C X t ( ) 1 = å ] [

20 Cost Functions Consider the first 4 time periods, with some arbitrary path. For the path given, 3 2 1 t = t = t = t = 3 Cost C X = + ( ) 1 2 3 6 4

21 Cost Functions But the probability of incurring this cost is the probability associated with this path; i.e. P Cost C X j { } ( ) = + 14 3 2 32 20 1 02 3 2 1 t = t = t = t = 3

22 Cost Functions The expected cost is the cost associated with each path x the probability associated with each path. E Cost P X k i C M [ ] { | } ( ) = å 1 3 2 1 t = t = t = t = 3

23 Cost Functions The expected cost is the cost associated with each path x the probability associated with each path. E Cost P X k i C M [ ] { | } ( ) = + å 1 2 3 4 3 2 1 t = t = t = t = 3

24 Cost Functions But we know how to consider all possible paths to a state. Consider Cost x Prob P C X i = 2 ( ) 3 2 1 E Cost P C X j t ij [ ] ( ) = å 2 3 t = t = t = t = 3

25 Cost Functions But we know how to consider all possible paths to a state. Consider E n C X t [ ( ) ] 1 = å 3 2 1 n P C X j ij t M ( ) 1 = å = å 1 n P C X ij t j M ( ) t = t = t = t = 3

26 Cost Functions The long run average cost then may be given by 1 n å E [ Cost ] = lim E [ C ( X = j ) ] n t n j = 1 n P C X j M ij t ( ) = å 1 M å = p C ( j ) j j =

27 { Example; Inventory C X ( ) , = 2 1 4 6 3
Suppose C(Xt) = cost of being in state Xt. In our inventory example, suppose it costs $2 / unit for each time period inventory is carried over. Then C X t ( ) , = 2 1 4 6 3 { t = 1 t = 

28 Example; Inventory Suppose C(Xt) = cost of being in state Xt. In our inventory example, suppose it costs $2 / unit for each time period inventory is carried over. Then E Cost [ ] C j M ( ) = å p t =  2 4 6 t = 1

29 { Complex Costs Inventory; Xt-1 C X D ( , ) = + < £ > ³ 25 10 3
Suppose an order for x units is made at a cost of $ x. For unsatisfied demand, cost of a lost sale is $50. If (s,S) = (0,3) inventory policy is used, Xt-1 C X D t ( , ) - = + < > 1 25 10 3 50 {

30 Complex Costs E Costs n P C X D ij t [ ] ( , ) lim = - å 1

31 Complex Costs å å lim E Costs n P C X D [ ] ( , ) = 1 k j ( ) = p
ij t [ ] ( , ) lim = - å 1 a miracle occurs k j M ( ) = å p

32 Example; Inventory å k E C D P ( ) [ , ] { } . 55 50 4 100 5 56 = + E
Cost [ ] k j M ( ) = å p t =  2 4 6 p3 = .166 p2 = .264 p1 = .285 p0 = .285 k E C D P t ( ) [ , ] { } . 55 50 4 100 5 56 = + t = 1

33 Example; Inventory å k E C D ( ) [ , ] 1 = = + 50 2 100 3 150 4 18 P D
Cost [ ] k j M ( ) = å p k E C D t ( ) [ , ] 1 = t =  2 4 6 p3 = .166 p2 = .264 p1 = .285 p0 = .285 = + - 50 2 100 3 150 4 18 1 P D e t { } . ! 56 t = 1

34 Example; Inventory å k E C D ( ) [ , ] 2 = = + 50 3 100 4 150 5 5.2 P
Cost [ ] k j M ( ) = å p k E C D t ( ) [ , ] 2 = t =  2 4 6 p3 = .166 p2 = .264 p1 = .285 p0 = .285 = + - 50 3 100 4 150 5 5.2 1 P D e t { } . ! 18.4 56 t = 1

35 Example; Inventory å k E C D ( ) [ , ] 3 = = + 50 4 100 5 150 6 1.2 P
Cost [ ] k j M ( ) = å p k E C D t ( ) [ , ] 3 = t =  2 4 6 p3 = .166 p2 = .264 p1 = .285 p0 = .285 = + - 50 4 100 5 150 6 1.2 1 P D e t { } . ! 5.2 18.4 56 t = 1

36 Example; Inventory å = + 56 285 18 4 5 2 264 1 166 70 ( . ) $22 E Cost
[ ] k j M ( ) = å p 1.2 t =  2 4 6 p3 = .166 p2 = .264 p1 = .285 p0 = .285 = + 56 285 18 4 5 2 264 1 166 70 ( . ) $22 5.2 18.4 56 t = 1


Download ppt "IENG 362 Markov Chains."

Similar presentations


Ads by Google