Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algebra Tiles Teachers will watch video and use ready made cornell notes to add to.

Similar presentations


Presentation on theme: "Algebra Tiles Teachers will watch video and use ready made cornell notes to add to."β€” Presentation transcript:

1 Algebra Tiles Teachers will watch video and use ready made cornell notes to add to

2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 x x x x x x x x Adding Polynomials 2π‘₯ 2 +5π‘₯βˆ’1
+ ( π‘₯ 2 βˆ’2π‘₯+3) = 3 π‘₯ 2 +3π‘₯+2 π‘₯ 2 π‘₯ 2 x x x x x -1 π‘₯ 2 π‘₯ 2 π‘₯ 2 1 π‘₯ 2 -x -x 1 x x x 1 1 1

3 Adding Polynomials (Find the Perimeter)
8π‘₯+2 4π‘₯ 2 βˆ’2π‘₯+3 π‘₯ 2 βˆ’1 3π‘₯ 2 +8π‘₯+2 π‘₯ 2 βˆ’1

4 Subtracting Polynomials
2π‘₯ 2 +5π‘₯βˆ’1 + ( βˆ’π‘₯ 2 +2π‘₯βˆ’3) ( π‘₯ 2 βˆ’2π‘₯+3) βˆ’ = π‘₯ 2 +7π‘₯βˆ’4 π‘₯ 2 π‘₯ 2 x x x x x -1 π‘₯ 2 x -1 - π‘₯ 2 π‘₯ 2 -1 1 -x x -x x -1 1 -1 1

5 Subtracting Polynomials
You Try! ( 2π‘₯ 2 +3π‘₯βˆ’5)βˆ’(3 π‘₯ 2 +4π‘₯βˆ’9)

6 +6 3x X + 2 3 Factoring out the GCF x x x x 3𝒙+πŸ” πŸ‘(𝒙+𝟐) 3𝒙+πŸ”
1 Graphic Organizer X 1 x 3x +6 3𝒙+πŸ” πŸ‘(𝒙+𝟐) x 1 X x 1 +1 1 x +6 3 Have teachers draw even groups 3𝒙+πŸ” πŸ‘(𝒙+𝟐) 3 groups of x+2

7 You Try! πŸπ’™βˆ’πŸ– Factoring out the GCF
Teachers must understand algebra tiles show the concept of how many duplications can be made using the most available tiles in each group

8 +6 -3x X βˆ’ 2 -3 Factoring out the GCF -3𝒙+πŸ” βˆ’πŸ‘(π’™βˆ’πŸ) -3𝒙+πŸ”
1 x - 2 Graphic Organizer x -1 -3x +6 X βˆ’ 2 -1 -x 1 x -1 -3 -x -3 Gives your kids the opportunity to do something different You would be surprised how many of your students will engage because it’s different and it doesn’t feel like math -3𝒙+πŸ” βˆ’πŸ‘(π’™βˆ’πŸ)

9 You Try! βˆ’πŸπ’™βˆ’πŸ– βˆ’πŸ’π±+𝟐 Factoring out the GCF
βˆ’πŸπ’™βˆ’πŸ– βˆ’πŸ’π±+𝟐 Teachers must understand algebra tiles show the concept of how many duplications can be made using the most available tiles in each group

10 Factoring out the GCF πŸ’ 𝒙 𝟐 βˆ’πŸπ’™ π‘₯ 2 -x -x

11 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 βˆ’2π‘₯ 4π‘₯ 2 2x βˆ’1 πŸπ’™ πŸ’ 𝒙 𝟐 βˆ’πŸπ’™=𝟐𝐱(πŸπ±βˆ’πŸ) πŸπ’™βˆ’πŸ 2x
Factoring out the GCF X X πŸπ’™βˆ’πŸ x x -1 Graphic Organizer π‘₯ 2 π‘₯ 2 -x x 4π‘₯ 2 βˆ’2π‘₯ 2x βˆ’1 x + x πŸπ’™ -x 2x π‘₯ 2 π‘₯ 2 -x x πŸ’ 𝒙 𝟐 βˆ’πŸπ’™=𝟐𝐱(πŸπ±βˆ’πŸ)

12 Factoring out the GCF 3 𝒙 𝟐 βˆ’πŸ”π’™ π‘₯ 2 -x -x -x -x -x -x

13 π‘₯ 2 βˆ’6π‘₯ 3π‘₯ 2 x βˆ’2 πŸ‘π’™ π’™βˆ’πŸ 3x 3 𝒙 𝟐 βˆ’πŸ”π’™=πŸ‘π’™(π’™βˆ’πŸ) Factoring out the GCF x
-1 -1 π‘₯ 2 -x Graphic Organizer x 3π‘₯ 2 βˆ’6π‘₯ x βˆ’2 πŸ‘π’™ +x 3x +x 3 𝒙 𝟐 βˆ’πŸ”π’™=πŸ‘π’™(π’™βˆ’πŸ)

14 Factoring out the GCF You Try! πŸ’ 𝒙 𝟐 βˆ’πŸ–π’™πŸ 𝒙 𝟐 βˆ’πŸ”π’™

15 βˆ’ 8 2x 3 𝒙 𝟐 βˆ’πŸ”π’™ 2x + 8 = 2(2xβˆ’4) x βˆ’4 2βˆ™π‘₯ βˆ’1βˆ™2βˆ™2βˆ™2 x βˆ’2 3βˆ™π‘₯βˆ™π‘₯
Factoring out the GCF Graphic Organizer x βˆ’4 2 βˆ’ 8 2x 2x + 8 = 2(2xβˆ’4) 2βˆ™π‘₯ βˆ’1βˆ™2βˆ™2βˆ™2 x βˆ’2 3x 3 𝒙 𝟐 βˆ’πŸ”π’™ πŸ‘π’™ 𝟐 βˆ’πŸ”π’™=πŸ‘π’™(π’™βˆ’πŸ) 3βˆ™π‘₯βˆ™π‘₯ βˆ’1βˆ™2βˆ™3βˆ™π‘₯

16 Factoring out the GCF

17 Factoring out the GCF

18 Multiplying Polynomials

19 Algebra Tiles or Area Model Multiplying Binomials
Multiplying Polynomials Graphic Organizer Algebra Tiles or Area Model (x + 1)(x + 2) x2 + 2x + x + 2 x + 2 x +1 x x x2 x +1 x2 x x x2 + 2x + x + 2 x2 + 3x + 2 + 1 x (x + 1)(x + 2) Multiplying Binomials 1 1 x2 + 3x + 2 Mnemonic Device: FOIL Mnemonic devicesΒ a device such as a pattern of letters, ideas, or associations that assists in remembering something. A mnemonic device is a memory aid and an acronym is a mnemonic technique.Β  F +O +I +L (x + 1)(x + 2) x2 + 2x + x + 2 x2 + 3x + 2

20 Factor by Grouping π‘₯ 2 +2π‘₯+π‘₯+2 ( π‘₯ 2 +2π‘₯) +x+2 π‘₯ π‘₯+2 +1 π‘₯+2 (π‘₯+1) π‘₯+2
Checking your work Factor by Grouping π‘₯ 2 +2π‘₯+π‘₯+2 ( π‘₯ 2 +2π‘₯) +x+2 π‘₯ π‘₯+2 +1 π‘₯+2 (π‘₯+1) π‘₯+2

21 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x + 2)( x + 3) x2 + 2x + 3x + 6 x + 2 x +1 x +1 x2 x x x x x2 + 3 x 1 1 x 1 1 x2 + 5x + 6 x 1 1 x2 + 3x + 2x + 6 Algebra tiles make a rectangle…opposite sides are congruent x2 + 5x + 6

22 Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3
Checking your work Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3 (π‘₯+2) π‘₯+3

23 Multiplying Polynomials
You Try! π‘₯+4 (π‘₯+1)

24 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x – 3)(x + 1) x2 +x -3x -3 x + 1 x +1 x x x2 -x -1 x x2 x - 3 -x -1 -x -1 x2 – 2x – 3 -x -1 x2 – 3x + x βˆ’ 3 x2 – 2x – 3

25 Factor by Grouping π‘₯ 2 βˆ’3π‘₯+π‘₯βˆ’3 ( π‘₯ 2 βˆ’3π‘₯) +π‘₯βˆ’3 π‘₯ π‘₯βˆ’3 +1 π‘₯βˆ’3 (π‘₯+1) π‘₯βˆ’3
Checking your work Factor by Grouping π‘₯ 2 βˆ’3π‘₯+π‘₯βˆ’3 ( π‘₯ 2 βˆ’3π‘₯) +π‘₯βˆ’3 π‘₯ π‘₯βˆ’3 +1 π‘₯βˆ’3 (π‘₯+1) π‘₯βˆ’3

26 Multiplying Polynomials
You Try! π‘₯βˆ’4 (π‘₯+1) π‘₯+4 (π‘₯βˆ’1)

27 Algebra Tiles Make a Rectangle
x x + 1 x + 1 x x + 3 x + 3 x x

28 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x – 3)(x – 3) x2 -3x -9 x - 3 x -1 x -x x2 x -1 x x2 -x -x -x - 3 -x 1 -x x2 – 6x + 9 -x x2 – 6x + 9 This trinomial is also a Perfect Square. By definition, a square has all sides equal. (x – 3)2

29 You Try! π‘₯βˆ’4 (π‘₯βˆ’1) π‘₯βˆ’3 (π‘₯βˆ’2) Draw the algebra tiles
Multiplying Polynomials Draw the algebra tiles You Try! π‘₯βˆ’4 (π‘₯βˆ’1) π‘₯βˆ’3 (π‘₯βˆ’2)

30 Multiplying Polynomials
Trinomials must and terms with exponents higher than 3 must be done using the graphic organizer not algebra tiles.

31 Factoring Polynomials

32 π‘₯ 2 +5π‘₯+6 Now arrange them to make a rectangle x2 x 1 1 1 1 1 1
Factoring Polynomials π‘₯ 2 +5π‘₯+6 1 1 x2 x 1 1 1 1 Now arrange them to make a rectangle

33 Factoring Polynomials
Graphic Organizer x x2 + 2x + 3x + 6 x +2 x +1 x + 3 x +1 x2 x x x x2 x +3 x 1 1 x 1 1 x 1 1 (𝒙+𝟐)(𝒙+πŸ‘) (𝒙+𝟐)(𝒙+πŸ‘)

34 Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3
Alternate Route x2 + 2x + 3x + 6 ? ? ? ? Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3 (π‘₯+2) π‘₯+3

35 Factoring Polynomials
You Try! 𝒙 𝟐 +πŸ”π’™+πŸ– (𝒙+𝟐)(𝒙+πŸ’)

36 𝒙 𝟐 +πŸ”π’™+πŸ– 𝒙 𝟐 ?𝒙 +πŸ–

37 Factoring Polynomials
π‘₯ 2 βˆ’4 x2 -1 -1 -1 -1 Now arrange them to make a square

38 Factoring Polynomials
π‘₯ 2 βˆ’4 Remember there were no middle terms … x2 -x x -1 -1 Use zero pairs! -1 -1 4 empty spaces = 2 zero pairs Graphic Organizer x x -1 x2 -2x +2x -4 x -x x -2 π‘₯ 2 βˆ’4 (x-2)(x+2) +1 x x2 -x x + 2 x x2 x x -1 -1 +2 -1 -1

39 Now try to arrange them to make a rectangle
Factoring Polynomials 𝒙 𝟐 +π’™βˆ’πŸ” Now try to arrange them to make a rectangle -1 -1 x2 x -1 -1 -1 -1 x2 x2 x2 x x x -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 When you have an even number of x’s missing use zero pairs

40 x -x x -x x -x x2 -1 x x x2 -1 x x -x x2 -1 x -x -x -x x

41 Algebra Tiles or Area Model
Factoring Polynomials Algebra Tiles or Area Model Graphic Organizer 𝒙 𝟐 +π’™βˆ’πŸ” x2 +3x -2x -6 x +3 x 1 x2 x -x x -1 x x2 x x x -2 -x 1 -x (x – 2)(x + 3)

42 Factor by Grouping π‘₯ 2 +3π‘₯βˆ’2π‘₯βˆ’6 ( π‘₯ 2 +3π‘₯) βˆ’2xβˆ’6 π‘₯ π‘₯+3 βˆ’2 π‘₯+3
Alternate Route x2 βˆ’ 2x + 3x + 6 ? ? ? Factor by Grouping π‘₯ 2 +3π‘₯βˆ’2π‘₯βˆ’6 ( π‘₯ 2 +3π‘₯) βˆ’2xβˆ’6 π‘₯ π‘₯+3 βˆ’2 π‘₯+3 (π‘₯βˆ’2) π‘₯+3 ?

43 𝒙 𝟐 βˆ’πŸ— 𝒙 𝟐 +πŸπ’™βˆ’πŸ– You Try! (π’™βˆ’πŸ‘)(𝒙+πŸ‘) (π’™βˆ’πŸ)(𝒙+πŸ’) (π’™βˆ’πŸ)(𝒙+πŸ’)
Factoring Polynomials You Try! 𝒙 𝟐 βˆ’πŸ— 𝒙 𝟐 +πŸπ’™βˆ’πŸ– (π’™βˆ’πŸ‘)(𝒙+πŸ‘) (π’™βˆ’πŸ)(𝒙+πŸ’) (π’™βˆ’πŸ)(𝒙+πŸ’)

44 𝒙 𝟐 +πŸ‘π’™=πŸ’ Now try to arrange them to make a rectangle x2 x x x x2 x2 x
Factoring Polynomials 𝒙 𝟐 +πŸ‘π’™=πŸ’ Now try to arrange them to make a rectangle -1 -1 x2 x x -1 -1 x +1 x x2 Not an even number of missing x’s… can’t use zero pair -1 x x2 x x -1 -1 -x -1 -1 -1 -1 -1 -1 x When you have an even number of x’s missing use zero pairs (𝒙+πŸ’)(π’™βˆ’πŸ)

45 𝒙 𝟐 βˆ’πŸ“π’™=πŸ” You Try! Draw the algebra tiles (π’™βˆ’πŸ”)(𝒙+𝟏)
Factoring Polynomials Draw the algebra tiles You Try! 𝒙 𝟐 βˆ’πŸ“π’™=πŸ” (π’™βˆ’πŸ”)(𝒙+𝟏)

46 Factoring Polynomials
πŸπ’™ 𝟐 +πŸ“π’™=πŸ‘ πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 x2 x2 x x x x x -1 -1 -1

47 x πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ x x2 x x x x2 x x x x- πŸπ’™βˆ’πŸ=πŸŽπ’™+πŸ‘=𝟎 πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎
Factoring Polynomials x + 3 x x +1 +1 +1 + 3 πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ 2x x x2 x x x 2x βˆ’ 1 x2 x x x X+ -1 -1 x- -1 -1 -1 πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 (πŸπ’™βˆ’πŸ)(𝒙+πŸ‘) πŸπ’™βˆ’πŸ=πŸŽπ’™+πŸ‘=𝟎 𝒙= 𝟏 𝟐 𝐱=βˆ’πŸ‘

48 πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ Factor by Grouping 2 π‘₯ 2 +6π‘₯βˆ’1π‘₯βˆ’3 ( 2π‘₯ 2 +6π‘₯) βˆ’1xβˆ’3
? ? Alternate Route πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ ? Factor by Grouping 2 π‘₯ 2 +6π‘₯βˆ’1π‘₯βˆ’3 ( 2π‘₯ 2 +6π‘₯) βˆ’1xβˆ’3 2π‘₯ π‘₯+3 βˆ’1 π‘₯+3 (2π‘₯βˆ’1) π‘₯+3 ?

49 πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 πŸπ’™ 𝟐 ?𝒙 βˆ’πŸ‘

50 You Try! Draw the algebra tiles πŸ‘π’™ 𝟐 +πŸ“π’™+𝟐 πŸ‘π’™ 𝟐 βˆ’πŸ“π’™βˆ’πŸ (πŸ‘π’™+𝟏)(𝒙+𝟐)
Factoring Polynomials Draw the algebra tiles You Try! πŸ‘π’™ 𝟐 +πŸ“π’™+𝟐 πŸ‘π’™ 𝟐 βˆ’πŸ“π’™βˆ’πŸ (πŸ‘π’™+𝟏)(𝒙+𝟐) (πŸ‘π’™+𝟏)(π’™βˆ’πŸ)

51 Completing the Square

52 Let’s make a square with
Completing the Square 8 2 𝒙 𝟐 +πŸ–π’™+ ____= (𝒙 ) 𝟐 16 4 𝒙+πŸ’ Let’s make a square with the given tiles x2 x x2 Now place the yellow tiles to complete the square! 8 tiles split into two groups When the yellow tiles are put into place, will be squared x x π‘₯ + 4 Since the length of each side is x+4, square it! 1 x 16 Yellow tiles

53 You Try! Draw the algebra tiles 𝒙 𝟐 +πŸ”π’™+ ____= (𝒙 + ) 𝟐
Factoring Polynomials Draw the algebra tiles You Try! 𝒙 𝟐 +πŸ”π’™+ ____= (𝒙 ) 𝟐 𝒙 𝟐 +πŸ”π’™+πŸ—= (𝒙 + πŸ‘ ) 𝟐 𝒙 𝟐 +πŸ•π’™+ ____= (𝒙 ) 𝟐 𝒙 𝟐 +πŸ•π’™+ πŸ’πŸ— πŸ’ = (𝒙 + πŸ• 𝟐 ) 𝟐


Download ppt "Algebra Tiles Teachers will watch video and use ready made cornell notes to add to."

Similar presentations


Ads by Google