Presentation is loading. Please wait.

Presentation is loading. Please wait.

CH3I VMI-REMPI data and analysis:

Similar presentations


Presentation on theme: "CH3I VMI-REMPI data and analysis:"— Presentation transcript:

1 CH3I VMI-REMPI data and analysis:
Content pages: Plan-table and fig.………………………………………………………………………… 2-3 Figs. From Pavle:………………………………………………………………………… 4-9 CH3+, KERs, images and threshold predictions:………………………… , 66-67,69-70 CH2+, KERs, and threshold predictions:………………………… I+, KERs, and threshold predictions:……………………………… 29-36,71-73 e- PES´s, and threshold predictions…… …… Conclusive remarks:……………………………………………………………………….. 56 From the literature(energetics of CH3)………………………………………… Energetics:…………………………………………………………………………………… 61-65,68 Exp. recordings etc.; reality………………………………………………………… 74-75 Energetics and excitation channels vs. # MR-REMPI spectra………………………………………………………………………… CH3I Rydberg states recorded……………………………………………………… #0, PES vs pix-factor……………………………………………………………………… 153 Updated:

2 VMI-REMPI experimental plan:
CH3I: no. 2hv/ eV 2hv/cm-1 1hv/cm-1 l / nm(1hv) Rydberg state converging to ref: Comment Predicted / 6.777 6s(0,..) 2E1/2 Table 4* 1 6.906 6s (1/2) +v2 2E1/2 $ Table 5* Not accessable by MOPO; use dye laser 2 7.306 6p (0…) # 2E3/2 Try use MOPO 3 7.36 6p(3/2) +v3 Table 6 * 4a 4b 7.381 (?) Unassigned peak, relatively strong (?) 4c 5 7.402 6p(3/2) +nv6 6 7.642 6p(3/2) +nv1 7 7.82 5d(0,…) # 8 7.996 6p(0,…) # 9 8.022 7s(0,…) # 10 8.299 7s(3/2) +nv2 Table 6* 11 8.429 7p(0,…) # (Try use MOPO); used exc./dye 12 8.652 i.e. 6 fundamental (0,…) bands (#); 5 vibrational bands; 1 uncertain band(?) / three bands for convergence to 2E1/2 ($) *ref: ; ; sheet: Ry spectra

3 (4) (2) (12) (6) (5) (11) (10) (0) (7) (3) (8) (9) (1)

4 CH3+ KERs… and predictions I+ KERs……… and predictions
Figs from Pavle: CH3+ KERs… and predictions I+ KERs……… and predictions PES´s………… and predictions See :

5 KER for CH3+ from Pavle; Fig. from OriginPro 8.5 eV 170919 (2) 7.306
6p (0…) # 2E3/2 from Pavle; Fig. from OriginPro 8.5 eV

6 , CH3I at nm, CH3

7 20-09-2017, CH3I at 358.835 nm, I fragments, irises low

8 NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC)
7.306 6p (0…) # 2E3/2 Ideas from Pavle; Fig. from OriginPro 8.5 Also in: ; sheet: Predictions NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) eV

9 20-09-2017, CH3I at 358.835 nm, photoelectrons
From PC..…CH3I results.ppt in

10 CH3+ KERs, images and threshold predictions:

11 eV CH3+ KERs, Off resonance resonance resonance
170928 (1) 6.906 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 6s (1/2) +v2 2E1/2 $ 170920 resonance resonance eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay18,Gr19 ; sheets: Ry spectra

12 eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 MOPO 170919 (2) 7.306
6p (0…) # 2E3/2 170929 (2) 7.306 6p (0…) # 2E3/2 exc./dye eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay19,Gr20 ; sheets: Ry spectra

13 eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2
171003; (4a); (exp.) 171019; (4a); (exp.) less space charge effect eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay31,Gr34 ; sheets: Ry spectra

14 eV CH3+ KERs, Abel converted; file: „abel_speed“
170925 (11) 8.429 7p(0,…) # 2E3/2 Abel converted; file: „abel_speed“ NOT Abel converted; file: „x_speed“ 171020 (11) 7p(0,…) # 2E3/2 eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay12,Gr13 ; sheets: Ry spectra

15 eV CH3+ Prediction calc: polarizer not IN Possibly:
(12) 8.652 7s(0,…) # 2E1/2 $ polarizer not IN Prediction calc: Possibly: CH3I + 1hvpd -> CH3I* CH3I* -> CH3#(..vi=1..)+ I; CH3#(..vi=1..)+ 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI CH3#(..vi=1..): vibrationally excited NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I* CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI eV Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI eV Subscript notations: pd = photodissociation i= ionization DE = 0.33 eV / 2662 cm-1(?) eV For E(M+,eV) = e-5 x (pix)2 ;Lay7,Gr7 ; sheet: Predictions

16 eV CH3+ KERs, updated: 170926 Off resonance see also slide 6
286.6 (exp.) 170922; (12) 8.652 7s(0,…) # 2E1/2 $ (exp.) see also slide 6 above (PG) for predictions eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay13,Gr15 ; sheet: Ry spectra

17 eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I*
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.476 eV (PC;CRC) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = e-5 x (pix)2 ;Lay2,Gr3 ; sheets: Ry spectra & Predictions

18 eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I*
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = e-5 x (pix)2 ;Lay2,Gr3 ; sheets: Ry spectra & Predictions

19 NB: The polarizer was not inserted in
CH3+ images: Ry(2), (170920); nm(exp.) <= x1_10fl (RAW file) Ry(12), ; nm(exp.) <= x1_5fl (RAW file) Ry(1), ; nm(exp.) <= x1_5fl (RAW file) NB: The polarizer was not inserted in the exp., hence, the angul. distrib. is invalid Rings might be because of 1hvpd channel(?)i.e.:

20 eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394
170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 NO polarizer in 170921; (12) 7s(0,…) # 2E1/2 $ 170922; (12) 7s(0,…) # 2E1/2 $ eV Virtually no difference ;Lay6,Gr8 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7,8 ; sheet: Ry spectra

21 eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394
170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171011; (9c); (exp.) 171020 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ eV Virtually no difference ;Lay6,Gr8 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7,8,6,9c ; sheet: Ry spectra

22 CH3+ KERs Comparison of shifted spectra: D(1hv) comparison Likely channels………………………. 22 D(3hv) comparison

23 D1hv / eV CH3+ KERs, Common thresholds for
CH3I+1hv -> CH3 (X,v1v2v3v4)+I/I*: NO FITS! 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV ;Lay26,Gr26 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c ; sheet: Ry spectra; Predictions-short

24 D1hv / eV Common thresholds for CH3+ KERs,
CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I interpretation Likely 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171005; (7); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV ;Lay28,Gr28 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7 ; sheet: Ry spectra; Predictions-short

25 D3hv / eV CH3+ KERs, Common thresholds for
CH3I+3hv -> CH3 **(Ry,0000)+I/I* and CH3+ + I-: CH3 **(3p2A2) CH3 **(3p2A2) CH3+ + I- 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 11 171002 9c : (3) 6p(3/2) +v3 2E3/2 8 171003; (4a); (exp.) 7 6 171003; (4b); (exp.) 171004; (4c); (exp.) Could be vibrational structure In the CH3**(3p2A2) + I Channel (?); however peaks do not match and PES spectra suggest that CH3** formation is not important. See slide 43 & KM work 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171011; (9c); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ Virtually no difference D3hv / eV ;Lay27,Gr27 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c ; sheet: Ry spectra; Predictions-short

26 CH2+ KERs:

27 eV CH2+ KERs, For E(M+,eV) = 3.41407e-5 x (pix)2 (1) 6.906 55700.63
6s (1/2) +v2 2E1/2 $ eV ;Lay3,Gr4 For E(M+,eV) = e-5 x (pix)2 ; sheet: Ry spectra

28 eV CH2+ KERs, Z: Space charge NO Space charge Z: See PG PPT file on
170920 (1) 6s (1/2) +v2 2E1/2 $ 171019 (1) 6s (1/2) +v2 2E1/2 $ See PG PPT file on Images and KERs the KERs don´t seem to agree(?) 170929 (2) (exp.) 6p (0…) # 2E3/2 171013 (2) (exp.) 6p (0…) # 2E3/2 eV (1): For E(M+,eV) = 3.5e-5 x (pix)2 & e-5 x (pix)2 (2):For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay3,Gr4 ; sheet: Ry spectra

29 I+ KERS and threshold predictions:

30 eV iris low I+ KERs, iris open Very high energy I+:
(1) 6.906 6s (1/2) +v2 2E1/2 $ iris low Very high energy I+: Prediction calc. for CH3 + I/I* formation after 2hv, 3hv and 4hv could not predict these! See: ; sheet: Predictions eV ;Lay4,Gr5 For E(M+,eV) = e-5 x (pix)2 ; sheet: Ry spectra

31 eV iris low I+ KERs, updated: 170929 Off resonance iris open
(1) 6.906 6s (1/2) +v2 2E1/2 $ 170928 170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ iris low iris open eV For E(M+,eV) = 3.50e-5 x (pix)2 ;Lay16,Gr17 ; sheet: Ry spectra

32 eV I+ KERs, updated: 170926 Off resonance
286.6 (exp.) 170922; (12) 8.652 7s(0,…) # 2E1/2 $ Off resonance (exp.) eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay14,Gr14 ; sheet: Ry spectra

33 eV I+ KERs, identical For E(M+,eV) = 3.5e-5 x (pix)2
171010; (9c); (exp.) 171010; (9); (exp.) identical eV For E(M+,eV) = 3.5e-5 x (pix)2 ;Lay30,Gr30 ; sheet: Ry spectra

34 eV I+ KERs, Looks like I resonance(?) ?
171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 I* ->-> I** OK; iodine resonance; see slide 71 171002 (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171004; (4b); (exp.) 171004; (4c); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171010; (9); (exp.) 171020; (10); (exp.) eV 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ ;Lay9,Gr10 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra

35 I+ KERs Comparison of shifted spectra: D(3hv) comparison

36 D3hv / eV I+ KERs Comparison on a D3hv scale:
Joined thresholds for : CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 (3) 6p(3/2) +v3 2E3/2 : 171002 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

37 PES´s and Threshold predictions:

38 eV PES, CH3**+ 1hv -> CH3+ CH3(X) + 3hv -> CH3+(X(1/2))
170920 (1) 6.906 6s (1/2) +v2 2E1/2 $ CH3**(3p2A2)+ 1hv -> CH3+ CH3I(X) + 3hv -> CH3I+ I(1/2)+ 3hv -> I+ CH3**(3s2A1´)+ 2hv -> CH3+ eV ;Lay11,Gr12 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Predictions

39 eV PES, Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170928 (1) 6.906
6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 6s (1/2) +v2 2E1/2 $ 170920 eV ;Lay17,Gr18 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra

40 eV PES, (2) Abs. CH3I + 2hvr -> CH3I**(6p(0..),2E3/2)
CH3I**(6p(0..),2E3/2) + hvpd -> CH3I# CH3I# -> CH3**((2);3p 2A2) + I/I* CH3**((2);3p 2A2) + hvi -> CH3+ + e- i.e. (2r + 1pd + 1i) REMPI NB: Threshold obtained for D(CH3-I) = 2.38 eV (2) 7.306 6p (0…) # 2E3/2 eV For E(e-,eV) = 3.29e-5 x (pix)2 ;Lay0,Gr1 ; sheet: „Ry spectra“ & „Predictions“

41 eV PES, (2) Abs. For E(e-,eV) = 3.29e-5 x (pix)2 MOPO (2) 7.306
170919 (2) 7.306 6p (0…) # 2E3/2 170929 (2) 7.306 6p (0…) # 2E3/2 exc./dye eV For E(e-,eV) = 3.29e-5 x (pix)2 ;Lay20,Gr21 ; sheet: „Ry spectra“

42 eV PES, CH3**(3s2A1´) + 1hv -> CH3+ CH3**(3p2A2) + 1hv -> CH3+
I(3/2)+ 3hv -> I+ 170922; (12) 8.652 7s(0,…) # 2E1/2 $ Does not seem to fit any peaks Suggests that CH3** formation is not Important. See also slide 40 below. eV ;Lay10,Gr11 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Predictions

43 eV PES, updated: 170926 Off resonance For E(M+,eV) = 3.29e-5 x (pix)2
170922; (12) 8.652 7s(0,…) # 2E1/2 $ (exp.) eV ;Lay15,Gr16 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra

44 eV PES, : Look the same 171024; (0); 366.025(exp.) 170920 (1)
6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 : 171002 (3) 6p(3/2) +v3 2E3/2 171003; (4a); (?) 171004; (4b); (exp.) Incorrect, see: slide 27 171004; (4c); (exp.) (??) Look the same 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171020; (10); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ eV ;Lay5,Gr6 For E(M+,eV) = 3.29e-5 x (pix)2 for all except: For E(M+,eV) = 3.104e-5 x (pix)2 for (6), (10),(0) ; sheet: Ry spectra

45 eV PES, 171011; (9b); 309.11(exp.) 171011; (9a); 309.11(exp.)
171010; (9c); (exp.) 171006; (8); (exp.) eV For E(e,eV) = 3.29e-5 x (pix)2 for (8): ;Lay29,Gr29 For E(e,eV) = 3.187e-5 x (pix)2 for (9,9a,9b,9c) ; sheet: Ry spectra

46 eV PES, Thresholds: 1hv for: For E(M+,eV) = 3.29e-5 x (pix)2
CH3I(Ry(2)) + 1hv -> CH3I+(3/2,1/2)+e CH3I(Ry(1)) + 1hv -> CH3I+(3/2,1/2)+e (11): 2,5 & 3.1 eV (no fit) (12): 2.8 & 3.4 eV (no fit) -which equals that for 3hv excitation via The Rydb. States to for CH3I+(3/2) and CH3I+(1/2) 170920 1 6.906 6s (1/2) +v2 2E1/2 $ 170929 2 7.306 6p (0…) # 2E3/2 170925 (11) 8.429 7p(0,…) # 2E3/2 170922; (12) 8.652 7s(0,…) # 2E1/2 $ eV ;Lay21,Gr22 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

47 Comparison of shifted PES´s
D(1hv) comparison D(3hv) comparison Discussion

48 Good matching of peaks => 1hv ionization processes
PES, (on a D1hv scale) No good fits of thresholds: Ionization of CH3** not important Thresholds: 1hv Processes for CH3**(i;0..) + hv -> CH3+ + e i= 1-6 170920 1 6.906 6s (1/2) +v2 2E1/2 $ 2 7.306 6p (0…) # 2E3/2 170929 171002 (3) 7.36 6p(3/2) +v3 2E3/2 170925 (11) 8.429 7p(0,…) # 2E3/2 12 8.652 7s(0,…) # 2E1/2 $ 170922 Good matching of peaks => 1hv ionization processes are largely involved D1hv / eV ;Lay24,Gr24 For E(M+,eV) = 3.29e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

49 The various thresholds above are:
No good fits of thresholds: Ionization of CH3** not important Let´s consider if the 1hv excitation channels are consistent with I** + 1hv -> I+ + e; I**: Rydberg states of iodine atoms NB: I+ ion signals are strong according to mass spectra. ; sheet: Predictions-short

50 D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e:
170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171004; (4b); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ For E(M+,eV) = 3.29e-5 x (pix)2 D1hv / eV ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

51 D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e:
171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ (2) 6p (0…) # 2E3/2 170919 171002 (3) 6p(3/2) +v3 2E3/2 : 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D1hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except: For E(e,eV) = 3.154e-5 x (pix)2 for (8) and (6) E(e,eV) = 3.104e-5 x (pix)2 for (0) ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

52 D1hv / eV Thresholds for PES, (on a D1hv scale) I** + hv -> I+ + e:
I**(5s25p4(3P1)6s; J=3/2) + hv -> I+ + e  I**(5s25p4(3P2)6s; J =5/2 ) +hv-> I+ +e  I**(5s25p4(3P2)6s; J =3/2 ) +hv-> I+ +e  170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171004; (4b); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D1hv / eV For E(M+,eV) = 3.29e-5 x (pix)2 Except: For E(M+,eV) = 3.154e-5 x (pix)2 for (8) and (6) ;Lay24,Gr24 ; sheet: Ry spectra & Predictions-short

53 D3hv / eV PES, (on a D3hv scale) : I+ <- I(3/2) I+ <- I(1/2):
CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) I+ <- I(3/2) CH3I+(3/2;0..) <- CH3I(X;0..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) I+ <- I(1/2): CH3+ <- CH3(X) 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 (3) 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) ; sheet: Ry spectra

54 D3hv / eV PES, (on a D3hv scale) 3hv processes :
CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 : 171002 (3) 6p(3/2) +v3 2E3/2 171003; (4a) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) ; sheet: Ry spectra & Predictions-short

55 D(3hv) comparison / The various thresholds above are:
3.138 3.438 2.818 CH3+ formation from CH3(X): by 3hv: I+ formation from I(3/2): I+ formation from I(1/2): CH3I+(3/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(3/2;0,0,0,0,1,0) formation from CH3I(X;,0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,1,0) formation from CH3I(X;0,0,0,0,0,0) by 3 hv: ; sheet: Predictions-short

56 https://notendur. hi. is/agust/rannsoknir/Crete17/XLS-170919
; sheet: D(nhv) comp.

57 From the literature: CH3 energetics

58 X(CH3): Methyl Radical, CH3 Vibrational states of the ground
To top X(CH3): Methyl Radical, CH3 Vibrational states of the ground electronic state

59 *3 *2 * CH3** *6 *5 *4 Methyl Radical, CH3 electronic state To top

60 http://webbook. nist. gov/cgi/cbook. cgi
X(CH3+):

61 Energetics: CH3I photoexcitation

62 CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2
(n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; no. 2hv/cm-1 Ry 1 2 3 4 5 6 7 8 9 10 11 12 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; (4) CH3I+ + e; CH3 + I**(min); 70000 (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics

63 Abs. spectrum (n) = number of photons CH3 + I+ + e; 103491.0874 i= 6 :
CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 CH3 + I+ + e; i= 6 : 1 CH3+ + e + I; Abs. spectrum i= 6 : 1 (4) CH3 + I** CH3I+ + e; 70000 CH3 + I**(min); (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics

64 CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e-
(12) 8.652 7s(0,…) # 2E1/2 $ i.e. CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI

65 CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2
(12) 8.652 7s(0,…) # 2E1/2 $ CH3**(i)+I*; i=1-6 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; no. 2hv/cm-1 Ry 1 2 3 4 5 6 7 8 9 10 11 12 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; (4) CH3I+ + e; CH3 + I**(min); 70000 close to 69783 (3) 55000 (2) CH3 + I*; (1) CH3 + I; CH3I ; Layo,Gr0; ; sheet: Energetics

66 D3hv / eV CH3+ KERs, Common threshold for CH3+ + I-
Partial interpretation Possible 12 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 11 171002 9c (3) 6p(3/2) +v3 2E3/2 8 171003; (4a); (exp.) 7 171003; (4b); (exp.) 6 4c 171004; (4c); (exp.) 171010; (6); (exp.) 4b 171005; (7); (exp.) 4a 171006; (8); (exp.) 3 171011; (9c); (exp.) 2 1 171020 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV From Kristjan: , ; 12:18 o´clock ; sheet: Ry spectra; Predictions-short

67 E State transfer CH3I# CH I- Ion-pair formation CH3+ I- Ion-pair state CH I/I* CH3I(X) r(CH3 - I)

68 no: 9 8 7 6 3hv Absorption spectra 2hv 1hv no: 9 8 7 6
CH3 + I+ + e; 3hv(9) = cm-1 CH3+ + e + I; CH3I# 3hv 3hv(6) = cm-1 CH3I+ v2 > 0 CH3 + I** CH3I+ + e; ; v2 = 0 Absorption spectra 2hv 1hv CH3 + I*; no: CH3 + I; lay0, Gr0 ; sheet: Ry spectra

69 D3hv / eV CH3+ KERs, Common thresholds for
CH3I+3hv -> CH3 (X,0000)+I** I**(6s,2D3/2) I**(6s,2D5/2) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 : (3) 6p(3/2) +v3 2E3/2 171003; (4a); (exp.) 171003; (4b); (exp.) 171004; (4c); (exp.) 171010; (6); (exp.) 171005; (7); (exp.) 171006; (8); (exp.) 171011; (9c); (exp.) 171020 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ D3hv / eV ;Lay32,Gr35 For E(M+,eV) = e-5 x (pix)2for (1),(2) and (12) For E(M+,eV) = 3.50e-5 x (pix)2 for (12) and (11), (3),(4a),4b,4c,7,8,6,9c ; sheet: Predictions-short

70 no: 4b 4a 3 2 3hv Absorption spectra 2hv 1hv no: 4b 4a 3 2
CH3 + I+ + e; CH3+ + e + I; CH3I# 3hv CH3 + I** I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 I**(6s,2D5/2) Absorption spectra 2hv 1hv CH3 + I*; CH3 + I; no: 4b 4a 3 2 lay0, Gr0 ; sheet: Ry spectra

71 Now let´s check the I+ KER for 4a and 4c (see slide 34 above) :
Idea: iodine atomic lines, i.e. …I/I* + 2hv -> I**; I** + 1hv -> I+ + e- ; sheet: I energies, NIST; see line 22 : E(I**)-E(I*) Calc Exp. (4a) I+ KER peak is due to „accidental“ 2hv resonance Transition following I*(1/2) formation: ???? -> I*(1/2) I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); (2hv » cm-1; see above) I**(…6p, J = 3/2) + 1hv -> I+ + e- According to Kristján (KM) ( and PPT: CH3I-KM) the I* formation (i.e. ???? above) of concern corresponds to: CH3I + 2hv -> CH3I**(short lived) CH3I**(short lived) -> I* + CH3(X) ; sheet: Ry spectra

72 I+ KERs, Threshold for CH3I + 2hv -> CH3I**; CH3I** -> I* + CH3(X;0000); eV; „accidental“ resonance detection: I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); I**(…6p, J = 3/2) + 1hv -> I+ + e- 171003; (4a); (exp.) eV ;Lay33,Gr32 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short, box= H90

73 3hv 2hvr Absorption spectra 2hvr 1hv 1hv no: 4a
CH3 + I+ + e; CH3+ + e + I; 2hvr I**(6p, J=3/2) CH3I+ + e; ; v2 = 0 I**(6s,2D3/2) Absorption spectra CH3 + I** I**(6s,2D5/2) 2hvr 1hv 1hv CH3 + I*; CH3 + I; no: 4a lay0, Gr0 ; sheet: Ry spectra

74 VMI-REMPI experiments; reality:
CH3I: bb no. 2hv/ eV 2hv/cm-1 1hv/cm-1 3hv/cm-1 l / nm(1hv) l/nm(exp) Rydberg state converging to ref: Comment recorded: 6.777 6s(0,..) 2E1/2 Table 4* 1 6.906 6s (1/2) +v2 Table 5* Not accessable by MOPO; try dye laser 2 7.306 6p (0…) 2E3/2 Try use MOPO 170919(& ) 3 7.36 6p(3/2) +v3 Table 6 * 4a 4b 4c(?) ??; skip that one 4c(??) 333.7 7.381 Unassigned peak, relatively strong (?) 5 7.402 6p(3/2) +nv6 6 7.642 6p(3/2) +nv1 7 7.82 5d(0,…) 8 7.996 6p(0,…) 9 8.022 7s(0,…) 10 8.299 7s(3/2) +nv2 Table 6* 11 8.429 7p(0,…) 12 8.652 i.e. 6 fundamental (0,…) bands; 5 vibrational bands; 1 unertain band(?) *ref: ; sheet: Ry spectra

75 https://notendur. hi. is/agust/rannsoknir/Crete17/XLS-170919
; sheet: Ry spectra

76 Energetics and excitation channels vs. #

77 See below: Major channels: ; Observations: CH3I## CH3 + I+ + e
4 CH3 + I+ + e CH3+ + I + e CH3+ + I CH3I# 2 1 e + CH3I+ 3 CH3 + I** CH3+ + I- CH3I**(Ry) 5 CH3I* CH3 + I/I* CH3I(X) See below:

78 No. of photons PES´s I+ KERs CH3+ KERs 1 #1,2,3,4a,4b, 6,7,8,11,12 - 2
Process no. No. of photons PES´s I+ KERs CH3+ KERs 1 =#4 (KM) I** formation CH3I+(2r+1pd)hv-> CH3I#-> CH3 + I** I** + 1hv -> I e 3 1 / 4 #1,2,3,4a,4b, 6,7,8,11,12 - 2 =#1 (KM) CH3I+ formation/autoionization CH3I+(2r+1pd)hv-> CH3I#-> CH3I+ + e CH3I+ + 1hv -> CH I =#6 (KM) Ion-pair formation CH3I+(2r+1pd)hv-> CH3I#-> CH I- I- + 1hv -> I/I* + e 4 ? 4hv excitation CH3I+(2r+1pd)hv-> CH3I#; CH3I# + 1hv -> CH3I## -> CH3 + I/I* I/I*+ 3hv -> I e 3 / 7 5 Rydberg predissociation CH3I+(2r)hv-> CH3I** - > CH3 + I/I* I* + 2rhv -> I**; I** + 1hv -> I e 3 / 5 # : observed #: Uncertain and/or under investigation # : NOT observed Observations: Subscript „r“ = resonance Subscript „pd“ = photodissociation

79 # 0:

80 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 0 CH3 + I+ + e; 103491.0874
CH3+ + e + I; 3hv I**(6s,2P3/2) CH3 + I** I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D3/2) I**(6s,2D5/2) Absorption spectra 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 0 lay0, Gr0 ; sheet: Ry spectra

81 # 1:

82 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 1 CH3 + I+ + e; 103491.0874
CH3+ + e + I; 3hv I**(6s,2P1/2) I**(6s,2P3/2) CH3 + I** I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D3/2) I**(6s,2D5/2) Absorption spectra 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 1 lay0, Gr0 ; sheet: Ry spectra

83 3hv 2hvr # 1 eV PES interpretations following CH3I# excitation:
e- KERs CH3+ + e + I; 1hv detection range for I** X,1/2 CH3 + I** X,3/2 3hv e- KERs CH3I# I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D5/2) 2hvr # 1 CH3 + I**(6s,2S1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 1

84 D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**;
I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** Ionization of I** requires 1 hv Ionization of I** requires 2 hv #1 170920 (1) 6s (1/2) +v2 2E1/2 $ D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

85 D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*:
CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I #1 170920 (1) 6s (1/2) +v2 2E1/2 $ D1hv / eV ;Lay28,Gr28 For E(M+,eV) = e-5 x (pix)2for (1) ; sheet: Ry spectra; Predictions-short

86 # 1; Comments/questions:
Where should PES peaks due to CH3I# -> CH3I+(3/2,v2=0 & 1) appear? What is the broad high KER in the I+ KER spectrum?

87 # 2:

88 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 2 CH3 + I+ + e; 103491.0874
CH3+ + e + I; 3hv I**(6s,2P1/2) CH3 + I** I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 Absorption spectra 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 2 lay0, Gr0 ; sheet: Ry spectra

89 3hv 2hvr # 2 eV PES interpretations following CH3I# excitation:
e- KERs CH3+ + e + I; 1hv detection range for I** CH3 + I** CH3I# X,1/2 X,3/2 3hv e- KERs I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D3/2) 2hvr # 2 CH3 + I**(6s,2D5-3/2) CH3 + I**(6s,2S1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 2

90 D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**;
I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) Ionization of I** requires 1 hv I**(6s,2S1/2) #2 (2) 6p (0…) # 2E3/2 170919 D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

91 D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*:
CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I #2 170919 (2) 6p (0…) # 2E3/2 D1hv / eV ;Lay28,Gr28 For E(M+,eV) = e-5 x (pix)2for (2) ; sheet: Ry spectra; Predictions-short

92 # 2; Comments/questions:
PES: Where should PES peaks due to CH3I# -> CH3I+(3/2,v2=0 & 1) appear? Determine more I** threshold levels for the PESs near the strongest peaks; It looks as if signals due to ionization of many levels are piling up/overlapping in that that region (see energy levels) I+ KER: Seem to be two contributions: 1) –from the I**(2D) states (Higher KER) and 2) – from higher enery I**states (Lower KER) (see levels in slide 87) CH3+ KER: Seem to be two (or more) contributions: 1) Low KER and 2) High KER (see slide 89).

93 # 3:

94 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 3 CH3 + I+ + e; 103491.0874
CH3+ + e + I; 3hv I**(6s,2P1/2) CH3 + I** I**(6s,2P3/2) Absorption spectra CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 3 lay0, Gr0 ; sheet: Ry spectra

95 3hv 2hvr # 3 eV PES interpretations following CH3I# excitation:
e- KERs CH3 + I+ + e; CH3+ + e + I; 1hv detection range for I** CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 3 eV lay0, Gr0 ; sheet: various & Ry spectra slide 3

96 D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**;
I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) Ionization of I** requires 1 hv I**(6s,2S1/2) # 3 : 171002 (3) 6p(3/2) +v3 2E3/2 D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

97 D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*:
CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I # 3 : 171002 (3) 6p(3/2) +v3 2E3/2 D1hv / eV ;Lay28,Gr28 ; sheet: Ry spectra; Predictions-short For E(M+,eV) = 3.50e-5 x (pix)2 for (3)

98 D3hv / eV Thresholds for CH3I+3hv -> CH3 (X,0000)+I** CH3+ KER on
CH3+ KERs alternative(??) interpretations following CH3I# excitation: Thresholds for CH3I+3hv -> CH3 (X,0000)+I** CH3+ KER on a D3hv scale for #12 as standard: I**(6s,2D3/2) I**(6s,2D5/2) Not likely: I**(6s,2P1/2) # 3 171002 (3) 6p(3/2) +v3 2E3/2 D3hv / eV ;Lay32,Gr35 For E(M+,eV) = 3.50e-5 x (pix)2 for (3) ; sheet: Predictions-short

99 # 3; Comments/questions:
PES: Determine more I** threshold levels for the PESs near the strongest peaks; It looks as if signals due to ionization of many levels are piling up/overlapping in that that region (see energy levels) Check thresholds for CH3I + 3hv -> CH3I#; CH3I# -> CH3I+(3/2,1/2) + e- (see below for CH3+ KERs) I+ KER: Add more thresholds (CH3(X,0000)) + I**) for more I** CH3+ KER: Are we observing vibrational structure in CH3+ (see slide 95), i.e.: CH3I + (2r+1)hv -> CH3I#; photoexcitations CH3I# -> CH3I+(3/2, ½) + e-; autoionization CH3I+(3/2, ½) + 1hv -> CH3+(X,v1v2v3v4) + I photodissociation CH3I+(3/2,1/2) + 1hv -> CH3+(X,v1v2v3v4) + I* photodissociation ?

100 # 4a:

101 4hv 3hv 3hv Absorption 2hv spectra 2hvr 2hvr 1hv # 4b
CH3 + I+ + e; 3hv CH3+ + e + I; 3hv CH3 + I** I**(6s,2P1/2) v2 = 1 I**(6s,2P3/2) 2hv Absorption spectra CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 4b lay0, Gr0 ; sheet: Ry spectra

102 3hv 2hvr # 4a eV PES interpretations following CH3I# excitation:
e- KERs CH3 + I+ + e; CH3+ + e + I; CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 CH3I+2hv->CH3I** CH3I**-> CH3+I* I*+2hv->I** I**+1hv-> I++e CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) # 4a CH3 + I**(6s,2S1/2) For E(e,eV) = 3.29e-5 x 0.97 (pix)2 eV lay0, Gr0 ; sheet: various & Ry spectra ;Gr42

103 eV # 4a For E(M+,eV) = 3.5e-5 x (pix)2
I+ KERs interpretations following CH3I# excitation: Threshold for CH3I + 2hv -> CH3I**; CH3I** -> I* + CH3(X;0000); eV; „accidental“ resonance detection: I*(..5p; J = 1/2) + 2hv -> I**(…6p, J = 3/2); I**(…6p, J = 3/2) + 1hv -> I+ + e- Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** # 4a 171003; (4a); (exp.) eV ;Lay33,Gr32 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short, box= H90

104 NB! # 4a CH3+ KERs interpretations following CH3I# excitation:
171003; (4a); (exp.)

105 # 4b:

106 4hv 3hv 3hv Absorption 2hv spectra 2hvr 2hvr 1hv # 4b
CH3 + I+ + e; 3hv CH3+ + e + I; 3hv CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) 2hv Absorption spectra CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 4b lay0, Gr0 ; sheet: Ry spectra

107 3hv 2hvr # 4b ? eV PES interpretations following CH3I# excitation:
e- KERs CH3 + I+ + e; CH3+ + e + I; CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 4b ? eV lay0, Gr0 ; sheet: various & Ry spectra slide 27

108 D3hv / eV Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**;
I+ KERs interpretations following CH3I# excitation: I+ KER on a D3hv scale for #12 as standard: Thresholds for :CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** # 4b I**(6s,2D5/2) I**(6s,2D3/2) I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) 171004; (4b); (exp.) D3hv / eV ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 ; sheet: Ry spectra & Predictions-short

109 D1hv / eV Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*:
CH3+ KERs interpretations following CH3I# excitation: Thresholds for CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3+ KER on a D3hv scale for #12 as standard: # 4b CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I 171003; (4b); (exp.) D1hv / eV ;Lay28,Gr28 ; sheet: Ry spectra; Predictions-short For E(M+,eV) = 3.50e-5 x (pix)2 for 4b

110 # 4b; Comments/questions:
PES: I+ KER: Add more thresholds (CH3(X,0000)) + I**) for more I** CH3+ KER: Are we observing vibrational structure in CH3+ (see slide 95), i.e.: CH3I + (2r+1)hv -> CH3I#; photoexcitations CH3I# -> CH3I+(3/2, ½) + e-; autoionization CH3I+(3/2, ½) + 1hv -> CH3+(X,v1v2v3v4) + I photodissociation CH3I+(3/2,1/2) + 1hv -> CH3+(X,v1v2v3v4) + I* photodissociation ?

111 # 5:

112 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 5 CH3 + I+ + e; 103491.0874
CH3+ + e + I; 3hv CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) Absorption spectra CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 5 lay0, Gr0 ; sheet: Ry spectra

113 # 6:

114 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 6 CH3 + I+ + e; 103491.0874
CH3+ + e + I; CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) Absorption spectra CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 6 lay0, Gr0 ; sheet: Ry spectra

115 3hv 2hvr # 6 ? eV PES interpretations following CH3I# excitation:
e- KERs e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) # 6 CH3 + I**(6s,2S1/2) What is all this? Could that be responsible for the broad, high KER I+? ? eV lay0, Gr0 ; sheet: various & Ry spectra slide 7

116 NB! # 6 I+ KERs interpretations following CH3I# excitation:
171010; (6); (exp.)

117 D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale
CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- # 6 171010; (6); (exp.) D3hv / eV ;Lay35,Gr38 ; sheet: Ry spectra; Predictions-short

118 # 6; Comments/questions:
PES: See question in PES spectrum / slide 109 I+ KER: Very broad and high KER structure(?) CH3+ KER:

119 # 7:

120 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 7 CH3 + I+ + e; 103491.0874
CH3+ + e + I; CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 7 lay0, Gr0 ; sheet: Ry spectra

121 3hv 2hvr #7 eV PES interpretations following CH3I# excitation: CH3I#
e- KERs e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) #7 CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 8

122 NB! # 7 I+ KERs interpretations following CH3I# excitation:
171005; (7); (exp.)

123 D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale
CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- # 7 171005; (7); (exp.) D3hv / eV ;Lay36,Gr39 ; sheet: Ry spectra; Predictions-short

124 # 8:

125 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 8 CH3 + I+ + e; 103491.0874
CH3+ + e + I; CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 8 lay0, Gr0 ; sheet: Ry spectra

126 3hv 2hvr #8 eV PES interpretations following CH3I# excitation: CH3I#
e- KERs e- KERs CH3 + I+ + e; 3hv CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; CH3 + I**(6s,2D3/2) 2hvr #8 CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 9

127 NB! #8 I+ KERs interpretations following CH3I# excitation:
171006; (8); (exp.)

128 D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale
CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- #8 171006; (8); (exp.) D3hv / eV ;Lay37,Gr40 ; sheet: Ry spectra; Predictions-short

129 # 9:

130 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 9 CH3 + I+ + e; 103491.0874
CH3+ + e + I; CH3 + I** I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 9 lay0, Gr0 ; sheet: Ry spectra

131 # 10:

132 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 10
CH3 + I+ + e; 3hv CH3 + I** CH3+ + e + I; I**(6s,2P1/2) Absorption spectra I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 10 lay0, Gr0 ; sheet: Ry spectra

133 # 11:

134 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 11
CH3 + I+ + e; CH3+ + e + I; CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 11 lay0, Gr0 ; sheet: Ry spectra

135 PES interpretations following CH3I# excitation:
e- KERs CH3+ + I* + e-; CH3 + I+ + e; e- KERs 3hv CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) #11 What is this? CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 10

136 NB! #11 I+ KERs interpretations following CH3I# excitation: 170925
(11) 7p(0,…) # 2E3/2

137 D3hv / eV Thresholds for CH3+ + I-: CH3+ KER on a D3hv scale
CH3+ KERs interpretations following CH3I# excitation: CH3+ KER on a D3hv scale for #12 as standard: Thresholds for CH3+ + I-: CH3+ + I- #11 170925 (11) 7p(0,…) # 2E3/2 D3hv / eV ;Lay38,Gr41 ; sheet: Ry spectra; Predictions-short

138 # 12:

139 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12
CH3 + I+ + e; CH3+ + e + I; CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr 1hv CH3 + I*; CH3 + I; # 12 lay0, Gr0 ; sheet: Ry spectra

140 PES interpretations following CH3I# excitation:
e- KERs 3hv CH3+ + I* + e-; e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) #12 What is this? eV lay0, Gr0 ; sheet: various & Ry spectra slide 11

141 NB! #12 I+ KERs interpretations following CH3I# excitation:
170922; (12) 7s(0,…) # 2E1/2 $

142 NB! #12 CH3+ KERs interpretations following CH3I# excitation:
170922; (12) 7s(0,…) # 2E1/2 $

143 MR-REMPI data: See ..rempi/CH3I/New 2017_2018/Overlapped Spectra.pxp

144 Study regions: Study regions: 2hv 2hv 1hv 1hv MR-REMPI total 2017-18
71500 70000 2hv 2hv 55500 55500 Slice imaging-experiments 1hv and 2hv(res.)… excitations 41700 35750 35750 35000 32440 32440 1hv 31400 1hv 27750 27750 27750 MR-REMPI from 2012 Low power Excitations 1hv non-resonant Excitation only MR-REMPI from 2012 Low power Excitations 1hv non-resonant Excitation only lay0, Gr0 sheet: „various..“

145 MR-REMPI data for CH3I: See …rempi/CH3I/New 2017_2018/ Overlapped Spectra.pxp:2hv = – cm-1 with the exception(gap) of 2hv = – cm-1 ; Lay0,Gr0

146 # 2,7,8,11,12: Included; Rydberg states
#0 #9 #12 # 2,7,8,11,12: Included; Rydberg states # 0,9 excluded #2 #8 #11 #7

147 # 1: Included; Rydberg states
# 1: Included; Rydberg states #1

148 # 3,6: Included; Rydberg states
#3 #10 #5 # 3,6: Included; Rydberg states # 5,10 excluded #6

149 # 1,2,3,6,7,8,11,12: Included; Rydberg states
# 0,5,9,10, excluded # 4b, included; unknown state # 4a,4c: excluded # # 4a, 4b 2hv / cm-1 Lay1, Gr4

150 Unknown peak 2hv / cm-1 # 2 3 5 # 4a, 4b,4b
# # 4a, 4b,4b 2hv / cm-1 Lay1, Gr4

151 [1/2]ns n= 6 7 [3/2]np n3 n2 n1 n= 6 7 n3 n2 n1 [3/2]nd [1/2]np n= 5 6
Measured Rydberg states Measured unknown state 2hv / cm-1 Lay1, Gr4

152 [1/2]ns n= 6 7 [3/2]np n3 n2 n1 n= 6 7 n3 n2 n1 [3/2]nd [1/2]np n= 5 6
Measured Rydberg states Measured unknown state 2hv / cm-1 Lay1, Gr4

153 D3hv / eV PES, (on a D3hv scale) 3hv processes :
CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); (exp.) 170920 (1) 6s (1/2) +v2 2E1/2 $ 170919 (2) 6p (0…) # 2E3/2 171002 (3) 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 7p(0,…) # 2E3/2 170922; (12) 7s(0,…) # 2E1/2 $ f = 3.6e-5 f = 3.104e-5 D3hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) ;Lay22,Gr23 ; sheet: Ry spectra & Predictions-short

154 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12
CH3 + I+ + e; CH3+ + e + I; CH3 + I** Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr CH3 + I**(1); cm-1 1hv CH3 + I*; CH3 + I; # 12 lay0, Gr0 ; sheet: Ry spectra

155 4hv 3hv Absorption spectra 2hvr 2hvr 1hv # 12
CH3 + I+ + e; 3hv= cm-1 CH3+ + e + I; CH3 + I** DE =30846 cm-1/3.82 eV Absorption spectra I**(6s,2P1/2) I**(6s,2P3/2) CH3I+ + e; ; v2 = 0 2hvr 2hvr CH3 + I**(1); cm-1 1hv CH3 + I*; DE = cm-1/12.98 eV CH3 + I; # 12 lay0, Gr0 ; sheet: Ry spectra

156 3hv 2hvr # 1 eV PES interpretations following CH3I# excitation:
e- KERs CH3+ + e + I; 1hv detection range for I** X,1/2 CH3 + I** X,3/2 3hv e- KERs CH3I# I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D5/2) 2hvr # 1 CH3 + I**(6s,2S1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 1

157 3hv 2hvr # 2 eV PES interpretations following CH3I# excitation:
e- KERs CH3+ + e + I; 1hv detection range for I** CH3 + I** CH3I# X,1/2 X,3/2 3hv e- KERs I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) CH3I+ + e; ; v2 = 0 I**(6s,2D3/2) 2hvr # 2 CH3 + I**(6s,2D5-3/2) CH3 + I**(6s,2S1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 2

158 3hv 2hvr # 3 eV PES interpretations following CH3I# excitation:
e- KERs CH3 + I+ + e; CH3+ + e + I; 1hv detection range for I** CH3 + I** CH3I# X,1/2 3hv X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) # 3 eV lay0, Gr0 ; sheet: various & Ry spectra slide 3

159 3hv 2hvr # 6 ? eV PES interpretations following CH3I# excitation:
e- KERs e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) # 6 CH3 + I**(6s,2S1/2) What is all this? Could that be responsible for the broad, high KER I+? ? eV lay0, Gr0 ; sheet: various & Ry spectra slide 7

160 3hv 2hvr #7 eV PES interpretations following CH3I# excitation: CH3I#
e- KERs e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; 3hv CH3I# X,1/2 X,3/2 CH3 + I** I**(6s,2P1/2) I**(6s,2P3/2) v2 = 1 I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) #7 CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 8

161 3hv 2hvr #8 eV PES interpretations following CH3I# excitation: CH3I#
e- KERs e- KERs CH3 + I+ + e; 3hv CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2P3/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; CH3 + I**(6s,2D3/2) 2hvr #8 CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 9

162 PES interpretations following CH3I# excitation:
e- KERs CH3+ + I* + e-; CH3 + I+ + e; e- KERs 3hv CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) #11 What is this? CH3 + I**(6s,2P1/2) eV lay0, Gr0 ; sheet: various & Ry spectra slide 10

163 PES interpretations following CH3I# excitation:
e- KERs 3hv CH3+ + I* + e-; e- KERs CH3 + I+ + e; CH3+ + I + e-; CH3+ + e + I; CH3I# X,1/2 CH3 + I** X,3/2 I**(6s,2P1/2) I**(6s,2S1/2) I**(6s,2D3/2) CH3I+ + e; ; v2 = 0 CH3+ + I-; 2hvr CH3 + I**(6s,2D3/2) CH3 + I**(6s,2S1/2) #12 What is this? eV lay0, Gr0 ; sheet: various & Ry spectra slide 11


Download ppt "CH3I VMI-REMPI data and analysis:"

Similar presentations


Ads by Google