Download presentation
Presentation is loading. Please wait.
1
experimental apparatus
A self-optimizing experimental apparatus Ilka Geisel1, Stefan Jöllenbeck1, Jan Mahnke1, Kai Cordes2, Wolfgang Ertmer1, Carsten Klempt1 Institut für Quantenoptik, Leibniz Universität Hannover Institut für Informationsverarbeitung, Leibniz Universität Hannover
2
Optimizing the Experiment
Why don’t we just do it by hand? [ms] [ms] P 1 P 2 P 3 Arbitrary parameter Ilka Geisel - A self optimizing experimental apparatus
3
Thorough optimization by hand
Number of Dimensions Measurements Time (for 1Hz rep. rate) 1 5 5 s 2 25 25 s 3 125 2 min 4 625 10 min 3 125 52 min 6 15 625 4 h 7 78 125 22 h 8 4,5 days 9 3 weeks 10 4 month 11 1,5 years 12 8 years 9 3 weeks → Scales exponentially with number of dimensions Ilka Geisel - A self optimizing experimental apparatus
4
What search methods are possible?
Ilka Geisel - A self optimizing experimental apparatus
5
Differential Evolution
Requirements Optimize multiple correlated experimental parameters Find the global maximum Robust regarding fluctuations Quick search also in high-dimensional parameter space Differential Evolution Storn and Price, 1995 Ilka Geisel - A self optimizing experimental apparatus
6
Differential Evolution
Time scales less than quadratically with number of dimensions Scale and units of the parameters are irrelevant Uses one target function Number of atoms Temperature Phase Space Density Position Any other accessible result Ilka Geisel - A self optimizing experimental apparatus
7
Evolutionary Algorithms
Generate first population Measure population Mutate population and generate trial vectors Measure trial vectors Compare one on one to choose new population Ilka Geisel - A self optimizing experimental apparatus
8
Generating the first generation
Dim=2 Current Detuning P0 x0 y0 P1 y1 x1 P2 y2 x2 P3 y3 x3 P4 y4 x4 # Vectors = Dim*5 P5 x5 y5 P6 y6 x6 P7 y7 x7 P8 y8 x8 P9 y9 x9 Ilka Geisel - A self optimizing experimental apparatus
9
Measure first population
Cur rent Detuning # Atoms P0 x0 y0 f(P0) P1 y1 x1 f(P1) P2 y2 x2 f(P2) P3 y3 x3 f(P3) P4 y4 x4 f(P4) P5 x5 y5 f(P5) P6 y6 x6 f(P6) P7 y7 x7 f(P7) P8 y8 x8 f(P8) P9 y9 x9 f(P9) Ilka Geisel - A self optimizing experimental apparatus
10
Ilka Geisel - A self optimizing experimental apparatus
Generate Mutants M0 x'0 y'0 M1 y'1 x'1 M2 y'2 x'2 M3 y'3 x'3 M4 y'4 x'4 M5 x'5 y'5 M6 y'6 x'6 M7 y'7 x'7 M8 y'8 x'8 M9 y'9 x'9 Ilka Geisel - A self optimizing experimental apparatus
11
Create a trial population
yes Crossover? no T0 x'0 y0 f(T0) T1 y'1 x1 f(T1) T2 y'2 x'2 f(T2) T3 y3 x'3 f(T3) T4 y'4 x'4 f(T4) T5 x5 y'5 f(T5) T6 y6 x'6 f(T6) T7 y'7 x7 f(T7) T8 y'8 x8 f(T8) T9 y9 x'9 f(T9) Ilka Geisel - A self optimizing experimental apparatus
12
Ilka Geisel - A self optimizing experimental apparatus
Compare one on one Population Generation 1 Trial vectors Generation 1 Population Generation 2 P0 f(P0) T0 f(T0) T0 f(T0) P1 f(P1) T1 f(T1) T1 f(T1) P2 f(P2) T2 f(T2) T2 f(T2) P3 f(P3) T3 f(T3) P3 f(P3) P4 f(P4) T4 f(T4) P4 f(P4) P5 f(P5) T5 f(T5) T5 f(T5) P6 f(P6) T6 f(T6) P6 f(P6) P7 f(P7) T7 f(T7) P7 f(P7) P8 f(P8) T8 f(T8) T8 f(T8) P9 f(P9) T9 f(T9) P9 f(P9) Ilka Geisel - A self optimizing experimental apparatus
13
Visualization in 9 Dimensions
2 Currents [-140,140] A 1 Detuning [-90,0] MHz 3 Currents [0,140] A 1 Current [-140,0] A 2 Currents [-140,140] A Blue: Trial Vectors, Orange: Population Vectors Ilka Geisel - A self optimizing experimental apparatus
14
Visualization in 9 Dimensions
2 Currents [-140,140] A 1 Detuning [-90,0] MHz 3 Currents [0,140] A 1 Current [-140,0] A 2 Currents [-140,140] A Blue: Trial Vectors, Orange: Population Vectors Ilka Geisel - A self optimizing experimental apparatus
15
Optimization in the experiment
Ilka Geisel - A self optimizing experimental apparatus
16
Optimizing a MOT in 9 Dimensions
Average of Population Average of Trials Ilka Geisel - A self optimizing experimental apparatus
17
Ilka Geisel - A self optimizing experimental apparatus
Human vs. DE Ilka Geisel - A self optimizing experimental apparatus
18
Ilka Geisel - A self optimizing experimental apparatus
Add-ons Hard boundaries Force mutants inside boundaries Different approaches show different behavior Elite Use only upper X% as parent vectors Consider speed against accuracy Finite Lifetime If a trial vector survived X times, redo the measurement Slows but helps consider experimental noise Ilka Geisel - A self optimizing experimental apparatus
19
Ilka Geisel - A self optimizing experimental apparatus
Summary Little computing power required Easy implementation (i.e. into LabView) Finds the global optimum We optimized up to 13 parameters Better than human Thank you for your attention! Ilka Geisel - A self optimizing experimental apparatus
20
Ilka Geisel - A self optimizing experimental apparatus
Pseudo Code // initialize… do // generate a trial population { for (i=0; i<Np; i++) // r0!=r1!=r2!=i { do r0=floor(rand(0,1)*Np); while (r0==i); do r1=floor(rand(0,1)*Np); while (r1==i or r1==r0); do r2=floor(rand(0,1)*Np); while (r2==i or r2==r1 or r2==r1); jrand=floor(D*rand(0,1)); for (j=0; j<D; j++) // generate one trial vector { if (rand(0,1) <=Cr or j==jrand) // use mutant { tj,i = pj,ro+F*(pj,r1-p,r2); // check for out of bounds? } else { tj,i=pj,i; // use old population // select the population of the next generation for (i=0; i<Np; i++) { if ( f(ti) >= f(pi)) pi=ti; } while (termination criterion not met); Ilka Geisel - A self optimizing experimental apparatus
21
Optimizing a Trap in 5 Dimensions
Ilka Geisel - A self optimizing experimental apparatus
22
What we optimized so far
Dimensions Samples per Generation Generations Before After MOT 9 9*10 = 90 417 1,69*1010 2,05*1010 MOT II 12 12*10 = 120 330 6,27*108 7,3*108 Molasses 2 2*10 = 20 15 8,15*108 Optical pumping 7 7*5 = 35 50 1,24*109 Magnetic trap 1,75*109 Ilka Geisel
23
How does that compare? Number of Dimensions Measurements
Number of Measurements with DE 2 25 300 7 78 125 1 750 9 37 530 12 39 600 Ilka Geisel
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.