Download presentation
Presentation is loading. Please wait.
1
By: Jeffrey Bivin Lake Zurich High School jeff.bivin@lz95.org
Inverses By: Jeffrey Bivin Lake Zurich High School Last Updated: November 17, 2005
2
Definition Inverse Relation A relation obtained by switching the coordinates of each ordered pair. Jeff Bivin -- LZHS
3
INVERSE RELATIONS x y { (3, 8) } relation Domain Range 3 8 inverse
{ (8, 3) } Jeff Bivin -- LZHS
4
y = x Relation { (1, 4), (4, 6), (-3, 2), (-4, -2), (-1,5), (0, 1) }
Inverse { (4, 1), (6, 4), (2, -3), (-2, -4), (5, -1), (1, 0) } y = x Jeff Bivin -- LZHS
5
y = x Relation {(-4,-6), (1,4), (2, 6), (-1,0), (-4,3), (4,-2)}
Inverse {(-6,-4), (4,1), (6, 2), (0,-1), (3,-4), (-2,4)} y = x Jeff Bivin -- LZHS
6
f(x)= x2 y = x Jeff Bivin -- LZHS
7
f(x)= x2 y = x Jeff Bivin -- LZHS
8
G(x) y = x Jeff Bivin -- LZHS
9
G(x) y = x Jeff Bivin -- LZHS
10
G(x) y = x Jeff Bivin -- LZHS
11
G(x) y = x Jeff Bivin -- LZHS
12
f(x)= x3 y = x Jeff Bivin -- LZHS
13
Find the inverse Is this a function? YES Jeff Bivin -- LZHS
14
Find the inverse Is this a function? NO Jeff Bivin -- LZHS
15
Find the inverse Is this a function? NO Jeff Bivin -- LZHS
16
f(g(x)) = x and g(f(x)) = x
Inverse functions Two functions, f(x) and g(x), are inverses of each other if and only if: f(g(x)) = x and g(f(x)) = x Jeff Bivin -- LZHS
17
Are these functions inverses?
Therefore: Inverses Jeff Bivin -- LZHS
18
Are these functions inverses?
Therefore: NOT Inverses Jeff Bivin -- LZHS
19
One-to-One functions A function is one-to-one if no two elements in the domain of the function correspond to the same element in the range. Domain Range 2 1 F(x) One-to-One 5 -5 9 4 Jeff Bivin -- LZHS
20
f(x)= x2 y = x Jeff Bivin -- LZHS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.