Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometry/Trig Name: __________________________

Similar presentations


Presentation on theme: "Geometry/Trig Name: __________________________"— Presentation transcript:

1 Geometry/Trig Name: __________________________
Parallel Lines and Angles Practice – Page 1 Date: ___________________________ Section 1 – Identify each pair of angles. If there is no relationship between the angles, write none. 1 2 9 10 3 4 11 12 5 6 13 14 7 8 15 16 1.) Ð1 and Ð8 _________________________________________________________ 2.) Ð13 and Ð8 ________________________________________________________ 3.) Ð1 and Ð4 _________________________________________________________ 4.) Ð3 and Ð6 _________________________________________________________ 5.) Ð6 and Ð ________________________________________________________ 6.) Ð5 and Ð ________________________________________________________ 7.) Ð5 and Ð9 _________________________________________________________ 8.) Ð7 and Ð ________________________________________________________ 9.) Ð11 and Ð _______________________________________________________ 10.) Ð9 and Ð _______________________________________________________ 11.) Ð7 and Ð _______________________________________________________ 12.) Ð13 and Ð _______________________________________________________ 13.) Ð12 and Ð _______________________________________________________ 14.) Ð16 and Ð ______________________________________________________

2 Parallel Lines and Angles Practice – Page 2
Part 2 – Use the diagram below to complete each exercise. All justifications must be written in a formal matter. Example – It would be unacceptable to write “Corresponding Ðs You must instead write, “If lines are parallel, then corresponding angles are congruent.” 1.) Ð7 Justification: _________________________________ __________________________________________________________________________________________________________________________________________ 2.) Ð3 and Ð5 are supplementary Justification: ___________________________________ __________________________________________________________________________________________________________________________________________ a // b 1 2 b 3 4 5 6 a 7 8 3.) Ð5 Justification: ___________________________________________________________ _____________________________________________________________________. 4.) Ð8 5.) mÐ7 + mÐ8 = 180 6.) Ð8 7.) Ð2 and Ð8 are supplementary

3 Parallel Lines and Angles Practice – Page 3
Part 3 – Use the diagram to complete each algebra connection problem. You must show all work. 1. m1 = x +3 and m5 = 2x – 20. a // b 1 2 What type of angles are they? _________________________ Congruent or supplementary? __________________________ b 3 4 5 6 a 7 8 x = ________ mÐ1 = _______ mÐ5 = ________ mÐ6 = ___________ mÐ8 = __________ 2. m3 = 56 and m6 = 2x – 4. 3. m2 = 3x – 10 and m7 = 2x + 16 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ3 = _________ mÐ6 = ________ mÐ5 = _________ mÐ7 = ________ x = ______ mÐ2 = _________ mÐ7 = ________ mÐ1 = _________ mÐ4 = ________ 4. m4 = 3x – 8 and m6 = x – 4 5. m1 = 2x – 6 and m7 = x - 3 What type of angles are they? _________________ Congruent or supplementary? __________________ What type of angles are they? _________________ Congruent or supplementary? __________________ x = ______ mÐ4 = _________ mÐ6 = ________ mÐ7 = _________ mÐ8 = ________ x = ______ mÐ1 = _________ mÐ7 = ________ mÐ5 = _________ mÐ6 = ________

4 Geometry/Trig Name: _________________________
Practice: What two lines are parallel (if any) according to the given information? n REASONS: A. If corresponding angles are congruent, then lines are parallel. B. If alternate interior angles are congruent, then lines are parallel. C. If alternate exterior angles are congruent, then lines are parallel. D. If same side interior angles are supplementary, then lines are parallel. E. If same side exterior angles are supplementary, then lines are parallel. l m 17 11 10 12 18 j 9 8 14 6 13 2 1 3 4 5 k 19 7 15 16 20 GIVEN Parallel Lines Reason Ex. mÐ7 = mÐ8 j // k A 1. mÐ7 = mÐ4 ___________ ___________ 2. mÐ5 + mÐ6 = 180° ___________ ___________ 3. mÐ8 = mÐ1 ___________ ___________ 4. mÐ10 + mÐ7 = 180° ___________ ___________ 5. mÐ1 = mÐ ___________ ___________ 6. mÐ8 + (mÐ2 + mÐ3) = 180° ___________ ___________ 7. mÐ1 = mÐ ___________ ___________ 8. mÐ1 + mÐ2 + mÐ3 = 180° ___________ ___________ 9. mÐ17 = mÐ ___________ ___________ 10. mÐ3 = mÐ ___________ ___________ 11. mÐ2 = mÐ ___________ ___________ 12. mÐ11 = mÐ ___________ ___________

5 Geometry/Trig Name: _________________________
USING Parallel Line Proofs – Page 1 Date: __________________________ 1. Given: g // h and s // t Prove: Ð15 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 2. Given: k // m Prove: Ð1 is supplementary to Ð7 2 6 m 1 5 4 8 k 3 7 Statements Reasons t

6 C B 3 2 1 A D E USING Parallel Line Proofs – Page 2
3. Given: CD // BE; Ð1 Prove: BE bisects ÐDBA C B 3 2 1 A D E Statements Reasons 4. Given: AD // BC; Ð2 Prove: AB bisects ÐCAD C 1 2 A B 3 Statements Reasons D

7 g h t s PROVING Parallel Line Proofs – Page 3
5. Given: Ð13; t // s Prove: h // g 1 2 9 10 g 3 4 11 12 5 6 13 14 h 7 8 15 16 t s Statements Reasons 6. Given: AB bisects ÐCAD; Ð2 Prove: AD // BC C 1 2 A B 3 Statements Reasons D

8 PROVING Parallel Line Proofs – Page 4
7. Given: Ð8 Prove: Ð7 2 6 m 1 5 4 8 3 7 k Statements Reasons t 8. Given: c // d; Ð1 and Ð14 are supplementary Prove: a // b 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 Statements Reasons c d

9 Parallel Line Proofs – Page 5
9. Given: AB // CD; Ð6 Prove: BC // DE A D B 2 1 3 4 5 7 6 C E Statements Reasons 10. Given: BC // DE; Ð6 Prove: AB // CD A D B 2 1 3 4 5 7 6 C E Statements Reasons

10 Parallel Line Proofs – Page 6
11. Given: BE bisects ÐDBA; Ð1 Prove: CD // BE C B 3 2 1 A D E Statements Reasons 12. Given: Ð2; Ð5 Prove: Ð6 HINT: First prove PQ // RS, then you should just need one more step to get to this prove. P R 3 4 T 2 5 6 S 1 Statements Q Reasons


Download ppt "Geometry/Trig Name: __________________________"

Similar presentations


Ads by Google