Presentation is loading. Please wait.

Presentation is loading. Please wait.

Daniel Dadush Centrum Wiskunde & Informatica (CWI) Aussois 2019

Similar presentations


Presentation on theme: "Daniel Dadush Centrum Wiskunde & Informatica (CWI) Aussois 2019"β€” Presentation transcript:

1 Daniel Dadush Centrum Wiskunde & Informatica (CWI) Aussois 2019
On Approximating the Covering Radius and Finding Dense Lattice Subspaces Daniel Dadush Centrum Wiskunde & Informatica (CWI) Aussois 2019

2 Lattices A lattice β„’βŠ† ℝ 𝑛 is 𝐡 β„€ 𝑛 for a basis 𝐡= 𝑏 1 ,…, 𝑏 𝑛 .
β„’(𝐡) denotes the lattice generated by 𝐡. Note: a lattice has many equivalent bases. 𝑏 1 𝑏 2 β„’

3 Lattices A lattice β„’βŠ† ℝ 𝑛 is 𝐡 β„€ 𝑛 for a basis 𝐡= 𝑏 1 ,…, 𝑏 𝑛 .
β„’(𝐡) denotes the lattice generated by 𝐡. The determinant of β„’ is | det 𝐡 | . 𝑏 1 𝑏 2 β„’

4 Lattices A lattice β„’βŠ† ℝ 𝑛 is 𝐡 β„€ 𝑛 for a basis 𝐡= 𝑏 1 ,…, 𝑏 𝑛 .
β„’(𝐡) denotes the lattice generated by 𝐡. The determinant of β„’ is | det 𝐡 | . Equal to volume of any tiling set. 𝑏 1 𝑏 2 β„’

5 Notation π‘€βŠ†β„’ sublattice of dimension π‘˜ Normalized Determinant:
nd 𝑀 ≔ det 𝑀 1 π‘˜ Projected Sublattice: β„’ 𝑀 ≔ Ξ  span 𝑀 βŠ₯ (β„’)

6 β„“ 2 Covering Radius πœ‡ β„’ β‰”πœ‡ 𝐡 2 𝑛 ,β„’
πœ‡ β„’ β‰”πœ‡ 𝐡 2 𝑛 ,β„’ Distance of farthest point to the lattice β„’. πœ‡ 𝒱 β„’ Voronoi cell 𝒱≔ all points closest to 0

7 Distance of farthest point to the lattice β„’.
β„“ 2 Covering Radius πœ‡ β„’ β‰”πœ‡ 𝐡 2 𝑛 ,β„’ Distance of farthest point to the lattice β„’. πœ‡ 𝒱 β„’ Question: Does the covering radius admit a β€œgood” dual characterization?

8 Volumetric Lower Bounds
vol 𝑛 𝐡 2 𝑛 πœ‡ β„’ β‰₯ vol 𝑛 𝒱 = det (β„’) πœ‡ 𝒱 β„’

9 Volumetric Lower Bounds
πœ‡(β„’) β‰₯ vol 𝑛 𝐡 2 𝑛 βˆ’ 1 𝑛 det β„’ 1 𝑛 πœ‡ 𝒱 β„’

10 Volumetric Lower Bounds
πœ‡ β„’ β‰Ώ 𝑛 det β„’ 1 𝑛 ≔ dim β„’ nd(β„’) πœ‡ 𝒱 β„’

11 Volumetric Lower Bounds
πœ‡ β„’ β‰₯πœ‡ β„’/𝑀 β‰Ώ dim β„’ 𝑀 nd(β„’/𝑀) β„’ πœ‡ β„’/𝑀 𝑀

12 β„“ 2 Kannan-LovΓ‘sz Constant
Define 𝐢 𝐾𝐿,2 (𝑛) to be smallest number such that πœ‡ β„’ ≀ 𝐢 𝐾𝐿,2 (𝑛) max π‘€βŠ†β„’ dim β„’ 𝑀 nd(β„’/𝑀) for all lattices of dimension at most 𝑛. 𝐢 𝐾𝐿,2 𝑛 =Ξ©( log 𝑛 ) : Basis 𝑒 1 , 𝑒 2 ,…, 1 𝑛 𝑒 𝑛 . Kannanβˆ’LovΓ‘sz `88: 𝐢 𝐾𝐿,2 𝑛 =𝑂( 𝑛 )

13 β„“ 2 Kannan-LovΓ‘sz Conjecture
Define 𝐢 𝐾𝐿,2 (𝑛) to be smallest number such that πœ‡ β„’ ≀ 𝐢 𝐾𝐿,2 (𝑛) max π‘€βŠ†β„’ dim β„’ 𝑀 nd(β„’/𝑀) for all lattices of dimension at most 𝑛. 𝐢 𝐾𝐿,2 𝑛 =Ξ©( log 𝑛 ) : Basis 𝑒 1 , 𝑒 2 ,…, 1 𝑛 𝑒 𝑛 . Kannanβˆ’LovΓ‘sz `88: 𝐢 𝐾𝐿,2 𝑛 =𝑂( log 𝑛 )

14 β„“ 2 KL Conjecture Resolution
D. Regev 16: Reduction to Reverse Minkowski Conj. If all sublattices of β„’ have determinant at least 1 then βˆ€π‘Ÿ>0 β„’βˆ©π‘Ÿ 𝐡 2 𝑛 ≀exp⁑(polylog 𝑛 π‘Ÿ 2 ). Regev-S. Davidowitz 17: Reverse Minkowski proved. 𝐢 𝐾𝐿,2 𝑛 =𝑂( log 𝑛 ) Questions: 1. Can we compute KL projections? Is there a better characterization?

15 Canonical Polygon [Stuhler 76]
𝑛 dimensional lattice β„’ 𝒫(β„’) Log det (𝑛, log det β„’ ) (0,0) dim. 1 2 𝑛-1 𝑛 { π‘˜, log det 𝑀 :sublattice π‘€βŠ†β„’, dim 𝑀 =π‘˜ }

16 Canonical Filtration [Stuhler 76]
𝑛 dimensional lattice β„’ β„’ Log det Vertices of 𝒫(β„’) β„’ 2 (𝑛, log det β„’ ) (0,0) β„’ 1 {0} dim. 1 2 𝑛-1 𝑛 Form Chain: 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚β‹―βŠ‚ β„’ π‘˜ =β„’

17 Canonical Filtration [Stuhler 76]
𝑛 dimensional lattice β„’ Slope: ln nd( β„’ 2 β„’ 1 ) β„’ Log det β„’ 2 (𝑛, log det β„’ ) (0,0) β„’ 1 {0} dim. 1 2 𝑛-1 𝑛 Form Chain: 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚β‹―βŠ‚ β„’ π‘˜ =β„’

18 Stable Lattice [Stuhler 76]
𝑛 dimensional lattice β„’ is stable I.e. no dense sublattices β„’ Log det (𝑛, log det β„’ ) (0,0) {0} dim. 1 2 𝑛-1 𝑛 If canonical filtration is trivial: 0 βŠ‚β„’

19 β„“ 2 KL for stable lattices
𝐢 𝑛 := max β„’ πœ‡ β„’ dim β„’ , where β„’ ranges over all stable lattices of det 1 and dimension ≀𝑛. Conjecture [Shapira-Weiss 16]: 𝐢 𝑛 =𝑂(1) ( β„€ 𝑛 is worst-case) Regev-S. Davidowitz 17: 𝐢 𝑛 =𝑂( log 𝑛 )

20 Canonical filtration and β„“ 2 KL
Regev-S. Davidowitz 17: For the canonical filtration 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚β‹―βŠ‚ β„’ π‘˜ =β„’ we have that πœ‡ β„’ 2 ≀ 𝐢 𝑛 2 π‘–βˆˆ π‘˜ dim ( β„’ 𝑖 β„’ π‘–βˆ’1 ) nd β„’ 𝑖 β„’ π‘–βˆ’1 2 ≀ log 𝑛 𝐢 𝑛 2 max i∈[π‘˜] dim ( β„’ β„’ π‘–βˆ’1 ) nd β„’ β„’ π‘–βˆ’1 2

21 Above NP certificate tight up to 𝐢 𝑛 !
Main Results Theorem [D. 18]: 1. Can compute 𝑂( log 𝑛 ) ``approximate’’ canonical filtration in 2 𝑂(𝑛) time. 2. For any chain 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚β‹―βŠ‚ β„’ π‘˜ =β„’ πœ‡ β„’ 2 β‰Ώ π‘–βˆˆ π‘˜ dim ( β„’ 𝑖 β„’ π‘–βˆ’1 ) nd β„’ β„’ π‘–βˆ’1 2 Above NP certificate tight up to 𝐢 𝑛 !

22 Densest Sublattice Problem
𝜏 β„’ ≔ min π‘€βŠ†β„’ 𝑀≠{0} nd(𝑀) 𝛼-DSP: Given β„’ find π‘€βŠ†β„’, 𝑀≠{0} such that nd 𝑀 ≀𝛼 𝜏(β„’). Remark: dimension of 𝑀 is not fixed! Key primitive for finding sparse lattice projections.

23 Densest Sublattice Problem
𝑛 dimensional lattice β„’ Want sublattice with slope ≀ log 𝛼 + log nd ( β„’ 1 ) β„’ Log det β„’ 2 (𝑛, log det β„’ ) (0,0) β„’ 1 {0} dim. 1 2 𝑛-1 𝑛

24 Densest Sublattice Problem
Theorem: Can solve 𝑂( log 𝑛 )-DSP in 2 𝑂(𝑛) time with high probability. High Level Approach: If β„’ is not approximate minimizer: find 𝑦≠0, orthogonal to actual minimizer, and recurse on β„’βˆ© 𝑦 βŠ₯

25 Densest Sublattice Problem
High Level Approach: If β„’ is not approximate minimizer: find 𝑦≠0, orthogonal to actual minimizer, and recurse on β„’βˆ© 𝑦 βŠ₯ Q: Where to find 𝑦? A: The dual lattice β„’ βˆ— Q: How to find it in β„’ βˆ— ? A: Discrete Gaussian sampling

26 Discrete Gaussian Distribution
6:30-8:30 Aharonov and Regev use the periodic Gaussian function. You can see how oracle access to this can be helpful.

27 Discrete Gaussian Distribution
Aggarwal-D.-Regev-S. Davidowitz: `15: Can sample in 2 𝑛+π‘œ(𝑛) time for any parameter. 6:30-8:30 Aharonov and Regev use the periodic Gaussian function. You can see how oracle access to this can be helpful.

28 Conclusions Open Problem Algorithmic version of β„“ 2 KL conjecture.
Lower bound certificates for covering radius that are conjecturally tight within 𝑂(1). Open Problem Prove that β„“ 2 KL for stable lattices is 𝑂(1). Prove KL conjecture for general convex bodies.

29 Kannan-LovΓ‘sz (KL) Conjecture
𝑃= 𝐾 If 𝐾∩ β„€ 𝑛 =βˆ… then βˆƒ π‘˜βˆˆ[𝑛], π‘ƒβˆˆ β„€ π‘˜Γ—π‘› , π‘Ÿπ‘Žπ‘›π‘˜ 𝑃 =π‘˜ such that vol 𝑃𝐾 1 π‘˜ ≀𝑂( log 𝑛 ). [Kannan `87, Kannan-LovΓ‘sz `88]


Download ppt "Daniel Dadush Centrum Wiskunde & Informatica (CWI) Aussois 2019"

Similar presentations


Ads by Google