Download presentation
Presentation is loading. Please wait.
1
Psych 231: Research Methods in Psychology
What Is Statistics: Crash Course Statistics #1 (~13 mins) 37 part series (each ~ mins) Suggested views: episodes 1-11, 17-21, 26-27, & 33-34 Statistics Psych 231: Research Methods in Psychology
2
Reminders Quiz 9 is due Friday @ midnight
Journal Summary 2 is due in labs this week (alternative assignment needs to be in to me by 4:30 on Friday) No formal labs next week, work on your group projects data analyses (there ARE labs this week) Reminders
3
Statistics Mistrust of statistics? It is all in how you use them
They are a critical tool in research Statistics Alan Smith: Why you should love statistics (~ 9 mins) Why You Need to Study Statistics (~3 mins) Why Statistics is Important in Education: Gail Burrill (~ 6 mins)
4
Samples and Populations
Sampling methods Sample Samples and Populations
5
Samples and Populations
2 General kinds of Statistics Descriptive statistics Used to describe, simplify, & organize data sets Describing distributions of scores Inferential statistics Used to test claims about the population, based on data gathered from samples Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Population Inferential statistics used to generalize back Sample Samples and Populations Statistical Questions: Kahn Academy (~8 mins)
6
Samples and Populations
2 General kinds of Statistics Descriptive statistics Used to describe, simplify, & organize data sets Describing distributions of scores Inferential statistics Used to test claims about the population, based on data gathered from samples Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Population Inferential statistics used to generalize back Sample Samples and Populations
7
Describing Distributions
Properties: Shape, Center, and Spread (variability) Shape Symmetric v. asymmetric (skew) Unimodal v. multimodal Center Where most of the data in the distribution are Mean, Median, Mode Spread (variability) How similar/dissimilar are the scores in the distribution? Standard deviation (variance), Range Describing Distributions
8
Describing Distributions
Properties: Shape, Center, and Spread (variability) Visual descriptions - A picture of the distribution is usually helpful* Numerical descriptions of distributions f % 1 (hate) 200 20 2 100 10 3 4 5 (love) 300 30 Describing Distributions *Note: See Chapter 5 of APA style guide: Displaying Results
9
Mean & Standard deviation
The mean (mathematical average) is the most popular and most important measure of center. Divide by the total number in the population Add up all of the X’s The formula for the population mean is (a parameter): The formula for the sample mean is (a statistic): Divide by the total number in the sample Interpreting the mean: The representative (standard) score The center of the distribution mean Mean & Standard deviation These distributions are the collection of weights T = total variability
10
Mean & Standard deviation
The mean (mathematical average) is the most popular and most important measure of center. Other measures include median and mode. The standard deviation is the most popular and important measure of variability. The standard deviation measures how far off all of the individuals in the distribution are from a standard, where that standard is the mean of the distribution. Essentially, the average of the deviations. mean Slightly different for samples Mean & Standard deviation
11
An Example: Computing Standard Deviation (population)
Working your way through the formula: Step 1: Compute deviation scores Step 2: Compute the SS Step 3: Determine the variance Take the average of the squared deviations Divide the SS by the N Step 4: Determine the standard deviation Take the square root of the variance standard deviation = σ = An Example: Computing Standard Deviation (population)
12
An Example: Computing Standard Deviation (sample)
Main difference: Step 1: Compute deviation scores Step 2: Compute the SS Step 3: Determine the variance Take the average of the squared deviations Divide the SS by the n-1 Step 4: Determine the standard deviation Take the square root of the variance This is done because samples are biased to be less variable than the population. This “correction factor” will increase the sample’s SD (making it a better estimate of the population’s SD) An Example: Computing Standard Deviation (sample)
13
Statistics 2 General kinds of Statistics Descriptive statistics
Used to describe, simplify, & organize data sets Describing distributions of scores Inferential statistics Used to test claims about the population, based on data gathered from samples Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Population Inferential statistics used to generalize back Sample Statistics What is Important about Statistics in Psychology?: Dr. Keon West (~15 mins)
14
Inferential Statistics
Two approaches Hypothesis Testing “There is a statistically significant difference between the two groups” Confidence Intervals “The mean difference between the two groups is between 4% ± 2%” Population Sample A Treatment X = 80% Sample B No Treatment X = 76% Inferential statistics used to generalize back Inferential Statistics
15
Inferential Statistics
Purpose: To make claims about populations based on data collected from samples What’s the big deal? Population Sample A Treatment X = 80% Sample B No Treatment X = 76% Example Experiment: Group A - gets treatment to improve memory Group B - gets no treatment (control) After treatment period test both groups for memory Results: Group A’s average memory score is 80% Group B’s is 76% Is the 4% difference a “real” difference (statistically significant) or is it just sampling error? Inferential Statistics
16
Inferential Statistics
Purpose: To make claims about populations based on data collected from samples Population Sample A Treatment X = 80% Sample B No Treatment X = 76% Sampling error is how much a difference you might get between your sample and your population resulting from “chance” (e.g., random sampling) Factors affecting “chance” Sample size Population variability Inferential Statistics
17
Sampling error: sample size
Population mean Population Distribution x Sampling error (Pop mean - sample mean) n = 1 Sampling error: sample size
18
Sampling error: sample size
Population mean Population Distribution Sample mean x x Sampling error (Pop mean - sample mean) n = 2 Sampling error: sample size
19
Sampling error: sample size
Generally, as the sample size increases, the sampling error decreases Population mean Population Distribution Sample mean x Sampling error (Pop mean - sample mean) Does you sample size matter? Kevin Lyons Diminishing returns: n = 10 Amount of reduced error Sample size increase 1/2 4 times 1/3 9 times 1/4 16 times 1/5 25 times 1/10 100 times Sampling error: sample size
20
Sampling error: population variability
Typically the narrower the population distribution, the narrower the range of possible samples, and the smaller the “chance” Large population variability Small population variability Sampling error: population variability
21
Sampling error “chance”
These two factors combine to impact the distribution of sample means. The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n “Standard error” (SE) XA XD Avg. Sampling error XB Sampling error “chance” More info
22
Difference from chance
These two factors combine to impact the distribution of sample means. Sample s X Population σ μ Distribution of sample means Avg. Sampling error “chance” Difference from chance More info
23
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Step 5: Make a decision about your null hypothesis “Reject H0” “Fail to reject H0” Testing Hypotheses
24
Testing Hypotheses Step 1: State your hypotheses
This is the hypothesis that you are testing Null hypothesis (H0) Alternative hypothesis(ses) “There are no differences (effects)” Generally, “not all groups are equal” You are not out to prove the alternative hypothesis (although it feels like this is what you want to do) If you reject the null hypothesis, then you are left with support for the alternative(s) (NOT proof!) Testing Hypotheses
25
Testing Hypotheses Step 1: State your hypotheses
In our memory example experiment Null H0: mean of Group A = mean of Group B Alternative HA: mean of Group A ≠ mean of Group B (Or more precisely: Group A > Group B) It seems like our theory is that the treatment should improve memory. That’s the alternative hypothesis. That’s NOT the one the we’ll test with inferential statistics. Instead, we test the H0 Testing Hypotheses
26
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Your alpha level will be your guide for when to: “reject the null hypothesis” “fail to reject the null hypothesis” This could be correct conclusion or the incorrect conclusion Two different ways to go wrong Type I error: saying that there is a difference when there really isn’t one (probability of making this error is “alpha level”) Type II error: saying that there is not a difference when there really is one Testing Hypotheses
27
Error types Real world (‘truth’) H0 is correct H0 is wrong
Type I error Reject H0 Experimenter’s conclusions Fail to Reject H0 Type II error Error types
28
Error types: Courtroom analogy
Real world (‘truth’) Defendant is innocent Defendant is guilty Type I error Find guilty Jury’s decision Type II error Find not guilty Error types: Courtroom analogy
29
Type I error: concluding that there is an effect (a difference between groups) when there really isn’t. Sometimes called “significance level” We try to minimize this (keep it low) Pick a low level of alpha Psychology: 0.05 and 0.01 most common For Step 5, we compare a “p-value” of our test to the alpha level to decide whether to “reject” or “fail to reject” to H0 Type II error: concluding that there isn’t an effect, when there really is. Related to the Statistical Power of a test How likely are you able to detect a difference if it is there Error types
30
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Descriptive statistics (means, standard deviations, etc.) Inferential statistics (t-tests, ANOVAs, etc.) Step 5: Make a decision about your null hypothesis Reject H0 “statistically significant differences” Fail to reject H0 “not statistically significant differences” Make this decision by comparing your test’s “p-value” against the alpha level that you picked in Step 2. Testing Hypotheses
31
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Step 5: Make a decision about your null hypothesis “Reject H0” “Fail to reject H0” Testing Hypotheses
32
Testing Hypotheses Step 1: State your hypotheses
This is the hypothesis that you are testing Null hypothesis (H0) Alternative hypothesis(ses) “There are no differences (effects)” Generally, “not all groups are equal” You aren’t out to prove the alternative hypothesis (although it feels like this is what you want to do) If you reject the null hypothesis, then you’re left with support for the alternative(s) (NOT proof!) Testing Hypotheses
33
Testing Hypotheses Step 1: State your hypotheses
In our memory example experiment Null H0: mean of Group A = mean of Group B Alternative HA: mean of Group A ≠ mean of Group B (Or more precisely: Group A > Group B) It seems like our theory is that the treatment should improve memory. That’s the alternative hypothesis. That’s NOT the one the we’ll test with inferential statistics. Instead, we test the H0 Testing Hypotheses
34
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Your alpha level will be your guide for when to: “reject the null hypothesis” “fail to reject the null hypothesis” This could be correct conclusion or the incorrect conclusion Two different ways to go wrong Type I error: saying that there is a difference when there really isn’t one (probability of making this error is “alpha level”) Type II error: saying that there is not a difference when there really is one (probability of making this error is “beta”) Testing Hypotheses
35
Error types Real world (‘truth’) H0 is correct H0 is wrong
Type I error Reject H0 Experimenter’s conclusions Fail to Reject H0 Type II error Error types
36
Error types: Courtroom analogy
Real world (‘truth’) Defendant is innocent Defendant is guilty Type I error Find guilty Jury’s decision Type II error Find not guilty Error types: Courtroom analogy
37
Type I error: concluding that there is an effect (a difference between groups) when there really isn’t. Sometimes called “significance level” We try to minimize this (keep it low) Pick a low level of alpha Psychology: 0.05 and 0.01 most common For Step 5, we compare a “p-value” of our test to the alpha level to decide whether to “reject” or “fail to reject” to H0 Type II error: concluding that there isn’t an effect, when there really is. Related to the Statistical Power of a test How likely are you able to detect a difference if it is there Error types
38
Testing Hypotheses Step 1: State your hypotheses
Step 2: Set your decision criteria Step 3: Collect your data from your sample(s) Step 4: Compute your test statistics Descriptive statistics (means, standard deviations, etc.) Inferential statistics (t-tests, ANOVAs, etc.) Step 5: Make a decision about your null hypothesis Reject H0 “statistically significant differences” Fail to reject H0 “not statistically significant differences” Make this decision by comparing your test’s “p-value” against the alpha level that you picked in Step 2. “Statistically significant differences” Essentially this means that the observed difference is above what you’d expect by chance (standard error) Testing Hypotheses
39
Step 4: “Generic” statistical test
Tests the question: Are there differences between groups due to a treatment? H0 is true (no treatment effect) Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” One population Two sample distributions XA XB 76% 80% Step 4: “Generic” statistical test
40
Step 4: “Generic” statistical test
Tests the question: Are there differences between groups due to a treatment? Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” H0 is true (no treatment effect) H0 is false (is a treatment effect) Two populations XA XB XB XA 76% 80% 76% 80% People who get the treatment change, they form a new population (the “treatment population) Step 4: “Generic” statistical test
41
Step 4: “Generic” statistical test
XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment Why might the samples be different? (What is the source of the variability between groups)? Step 4: “Generic” statistical test
42
Step 4: “Generic” statistical test
XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment The generic test statistic - is a ratio of sources of variability Observed difference TR + ID + ER ID + ER Computed test statistic = = Difference from chance Step 4: “Generic” statistical test
43
Recall: Sampling error
The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n XA XD Avg. Sampling error XB Difference from chance Recall: Sampling error
44
Step 4: “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion TR + ID + ER ID + ER Distribution of the test statistic Test statistic Distribution of sample means α-level determines where these boundaries go Step 4: “Generic” statistical test
45
Step 4: “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 2.5% 2.5% “two-tailed” with α = 0.05 Fail to reject H0 Step 4: “Generic” statistical test
46
Step 4: “Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 “One tailed test”: sometimes you know to expect a particular difference (e.g., “improve memory performance”) 5.0% “one-tailed” with α = 0.05 Fail to reject H0 Step 4: “Generic” statistical test
47
Step 4: “Generic” statistical test
Things that affect the computed test statistic Size of the treatment effect (effect size) The bigger the effect, the bigger the computed test statistic Difference expected by chance (standard error) Variability in the population Sample size TR + ID + ER ID + ER TR + ID + ER ID + ER XB XA XB XA TR + ID + ER ID + ER Step 4: “Generic” statistical test
48
Some inferential statistical tests
1 factor with two groups T-tests Between groups: 2-independent samples Within groups: Repeated measures samples (matched, related) 1 factor with more than two groups Analysis of Variance (ANOVA) (either between groups or repeated measures) Multi-factorial Factorial ANOVA Some inferential statistical tests
49
T-test Design Formulae: Observed difference X1 - X2 T =
2 separate experimental conditions Degrees of freedom Based on the size of the sample and the kind of t-test Formulae: Observed difference T = X X2 Diff by chance Based on sampling error Computation differs for between and within t-tests CI: μ=(X1-X2)±(tcrit)(Diff by chance) T-test
50
T-test Reporting your results
The observed difference between conditions Kind of t-test Computed T-statistic Degrees of freedom for the test The “p-value” of the test “The mean of the treatment group was 12 points higher than the control group. An independent samples t-test yielded a significant difference, t(24) = 5.67, p < 0.05, 95% CI [7.62, 16.38]” “The mean score of the post-test was 12 points higher than the pre-test. A repeated measures t-test demonstrated that this difference was significant significant, t(12) = 7.50, p < 0.05, 95% CI [8.51, 15.49].” T-test
51
Analysis of Variance (ANOVA)
XB XA XC Designs More than two groups 1 Factor ANOVA, Factorial ANOVA Both Within and Between Groups Factors Test statistic is an F-ratio Degrees of freedom Several to keep track of The number of them depends on the design Analysis of Variance (ANOVA)
52
Analysis of Variance (ANOVA)
XB XA XC More than two groups Now we can’t just compute a simple difference score since there are more than one difference So we use variance instead of simply the difference Variance is essentially an average difference Observed variance Variance from chance F-ratio = Analysis of Variance (ANOVA)
53
1 factor ANOVA 1 Factor, with more than two levels XB XA XC
Now we can’t just compute a simple difference score since there are more than one difference A - B, B - C, & A - C 1 factor ANOVA
54
1 factor ANOVA The ANOVA tests this one!! XA = XB = XC XA ≠ XB ≠ XC
Null hypothesis: H0: all the groups are equal The ANOVA tests this one!! XA = XB = XC Do further tests to pick between these Alternative hypotheses HA: not all the groups are equal XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB 1 factor ANOVA
55
1 factor ANOVA Planned contrasts and post-hoc tests:
- Further tests used to rule out the different Alternative hypotheses XA ≠ XB ≠ XC Test 1: A ≠ B XA = XB ≠ XC Test 2: A ≠ C XA ≠ XB = XC Test 3: B = C XA = XC ≠ XB 1 factor ANOVA
56
1 factor ANOVA Reporting your results The observed differences
Kind of test Computed F-ratio Degrees of freedom for the test The “p-value” of the test Any post-hoc or planned comparison results “The mean score of Group A was 12, Group B was 25, and Group C was 27. A 1-way ANOVA was conducted and the results yielded a significant difference, F(2,25) = 5.67, p < Post hoc tests revealed that the differences between groups A and B and A and C were statistically reliable (respectively t(1) = 5.67, p < 0.05 & t(1) = 6.02, p < 0.05). Groups B and C did not differ significantly from one another” 1 factor ANOVA
57
We covered much of this in our experimental design lecture
More than one factor Factors may be within or between Overall design may be entirely within, entirely between, or mixed Many F-ratios may be computed An F-ratio is computed to test the main effect of each factor An F-ratio is computed to test each of the potential interactions between the factors Factorial ANOVAs
58
Factorial designs Consider the results of our class experiment X ✓ ✓
Main effect of cell phone X Main effect of site type ✓ An Interaction between cell phone and site type ✓ -0.50 0.04 Factorial designs
59
Statistical significance
“Statistically significant differences” When you “reject your null hypothesis” Essentially this means that the observed difference is above what you’d expect by chance “Chance” is determined by estimating how much sampling error there is Factors affecting “chance” Sample size Population variability Statistical significance
60
(Pop mean - sample mean)
Population mean Population Distribution x Sampling error (Pop mean - sample mean) n = 1 Sampling error
61
(Pop mean - sample mean)
Population mean Population Distribution Sample mean x x Sampling error (Pop mean - sample mean) n = 2 Sampling error
62
(Pop mean - sample mean)
Generally, as the sample size increases, the sampling error decreases Population mean Population Distribution Sample mean x Sampling error (Pop mean - sample mean) n = 10 Sampling error
63
Typically the narrower the population distribution, the narrower the range of possible samples, and the smaller the “chance” Large population variability Small population variability Sampling error
64
Sampling error Population Distribution of sample means
These two factors combine to impact the distribution of sample means. The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n XA XD Avg. Sampling error XB “chance” Sampling error
65
Significance “A statistically significant difference” means:
the researcher is concluding that there is a difference above and beyond chance with the probability of making a type I error at 5% (assuming an alpha level = 0.05) Note “statistical significance” is not the same thing as theoretical significance. Only means that there is a statistical difference Doesn’t mean that it is an important difference Significance
66
Non-Significance Failing to reject the null hypothesis
Generally, not interested in “accepting the null hypothesis” (remember we can’t prove things only disprove them) Usually check to see if you made a Type II error (failed to detect a difference that is really there) Check the statistical power of your test Sample size is too small Effects that you’re looking for are really small Check your controls, maybe too much variability Non-Significance
67
From last time XA XB About populations Example Experiment:
Group A - gets treatment to improve memory Group B - gets no treatment (control) After treatment period test both groups for memory Results: Group A’s average memory score is 80% Group B’s is 76% H0: μA = μB H0: there is no difference between Grp A and Grp B Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Is the 4% difference a “real” difference (statistically significant) or is it just sampling error? Two sample distributions XA XB 76% 80% From last time
68
“Generic” statistical test
Tests the question: Are there differences between groups due to a treatment? H0 is true (no treatment effect) Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” One population Two sample distributions XA XB 76% 80% “Generic” statistical test
69
“Generic” statistical test
Tests the question: Are there differences between groups due to a treatment? Real world (‘truth’) H0 is correct H0 is wrong Experimenter’s conclusions Reject H0 Fail to Reject H0 Type I error Type II error Two possibilities in the “real world” H0 is true (no treatment effect) H0 is false (is a treatment effect) Two populations XA XB XB XA 76% 80% 76% 80% People who get the treatment change, they form a new population (the “treatment population) “Generic” statistical test
70
“Generic” statistical test
XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment Why might the samples be different? (What is the source of the variability between groups)? “Generic” statistical test
71
“Generic” statistical test
XB XA ER: Random sampling error ID: Individual differences (if between subjects factor) TR: The effect of a treatment The generic test statistic - is a ratio of sources of variability Observed difference TR + ID + ER ID + ER Computed test statistic = = Difference from chance “Generic” statistical test
72
Sampling error Population “chance” Distribution of sample means
The distribution of sample means is a distribution of all possible sample means of a particular sample size that can be drawn from the population Population Distribution of sample means XC Samples of size = n XA XD Avg. Sampling error XB “chance” Sampling error
73
“Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion TR + ID + ER ID + ER Distribution of the test statistic Test statistic Distribution of sample means α-level determines where these boundaries go “Generic” statistical test
74
“Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 Fail to reject H0 “Generic” statistical test
75
“Generic” statistical test
The generic test statistic distribution To reject the H0, you want a computed test statistics that is large reflecting a large Treatment Effect (TR) What’s large enough? The alpha level gives us the decision criterion Distribution of the test statistic Reject H0 “One tailed test”: sometimes you know to expect a particular difference (e.g., “improve memory performance”) Fail to reject H0 “Generic” statistical test
76
“Generic” statistical test
Things that affect the computed test statistic Size of the treatment effect The bigger the effect, the bigger the computed test statistic Difference expected by chance (sample error) Sample size Variability in the population “Generic” statistical test
77
Significance “A statistically significant difference” means:
the researcher is concluding that there is a difference above and beyond chance with the probability of making a type I error at 5% (assuming an alpha level = 0.05) Note “statistical significance” is not the same thing as theoretical significance. Only means that there is a statistical difference Doesn’t mean that it is an important difference Significance
78
Non-Significance Failing to reject the null hypothesis
Generally, not interested in “accepting the null hypothesis” (remember we can’t prove things only disprove them) Usually check to see if you made a Type II error (failed to detect a difference that is really there) Check the statistical power of your test Sample size is too small Effects that you’re looking for are really small Check your controls, maybe too much variability Non-Significance
79
Using Confidence intervals
CI: μ = (X) ± (tcrit) (diff by chance) What DOES “confident” mean? “90% confidence” means that 90% of the interval estimates of this sample size will include the actual population mean 9 out of 10 intervals contain μ Actual population mean μ Using Confidence intervals
80
Using Confidence intervals
CI: μ = (X) ± (tcrit) (diff by chance) Distribution of the test statistic The upper and lower 2.5% Confidence interval uses the tcrit values that identify the top and bottom tails 2.5% 2.5% A 95% CI is like using a “two-tailed” t-test with with α = 0.05 95% of the sample means Using Confidence intervals
81
Using Confidence intervals
CI: μ = (X) ± (tcrit) (diff by chance) Note: How you compute your standard error will depend on your design Using Confidence intervals
82
Error bars Two types typically Standard Error (SE)
diff by chance Confidence Intervals (CI) A range of plausible estimates of the population mean CI: μ = (X) ± (tcrit) (diff by chance) Note: Make sure that you label your graphs, let the reader know what your error bars are Error bars
83
Some inferential statistical tests
1 factor with two groups T-tests Between groups: 2-independent samples Within groups: Repeated measures samples (matched, related) 1 factor with more than two groups Analysis of Variance (ANOVA) (either between groups or repeated measures) Multi-factorial Factorial ANOVA Some inferential statistical tests
84
T-test Design Formula: Observed difference X1 - X2 T =
2 separate experimental conditions Degrees of freedom Based on the size of the sample and the kind of t-test Formula: Observed difference T = X X2 Diff by chance Based on sample error Computation differs for between and within t-tests T-test
85
T-test Reporting your results
The observed difference between conditions Kind of t-test Computed T-statistic Degrees of freedom for the test The “p-value” of the test “The mean of the treatment group was 12 points higher than the control group. An independent samples t-test yielded a significant difference, t(24) = 5.67, p < 0.05, 95% CI [7.62, 16.38]” “The mean score of the post-test was 12 points higher than the pre-test. A repeated measures t-test demonstrated that this difference was significant significant, t(12) = 7.50, p < 0.05, 95% CI [8.51, 15.49].” Dep Var Error bars are 95% CIs T-test
86
Analysis of Variance XB XA XC Designs Test statistic is an F-ratio
More than two groups 1 Factor ANOVA, Factorial ANOVA Both Within and Between Groups Factors Test statistic is an F-ratio Degrees of freedom Several to keep track of The number of them depends on the design Analysis of Variance
87
Analysis of Variance More than two groups F-ratio = XB XA XC
Now we can’t just compute a simple difference score since there are more than one difference So we use variance instead of simply the difference Variance is essentially an average difference Observed variance Variance from chance F-ratio = Analysis of Variance
88
1 factor ANOVA 1 Factor, with more than two levels XB XA XC
Now we can’t just compute a simple difference score since there are more than one difference A - B, B - C, & A - C 1 factor ANOVA
89
1 factor ANOVA The ANOVA tests this one!! XA = XB = XC XA ≠ XB ≠ XC
Null hypothesis: H0: all the groups are equal The ANOVA tests this one!! XA = XB = XC Do further tests to pick between these Alternative hypotheses HA: not all the groups are equal XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB 1 factor ANOVA
90
1 factor ANOVA Planned contrasts and post-hoc tests:
- Further tests used to rule out the different Alternative hypotheses XA ≠ XB ≠ XC Test 1: A ≠ B XA = XB ≠ XC Test 2: A ≠ C XA ≠ XB = XC Test 3: B = C XA = XC ≠ XB 1 factor ANOVA
91
1 factor ANOVA Reporting your results The observed differences
Kind of test Computed F-ratio Degrees of freedom for the test The “p-value” of the test Any post-hoc or planned comparison results “The mean score of Group A was 12, Group B was 25, and Group C was 27. A 1-way ANOVA was conducted and the results yielded a significant difference, F(2,25) = 5.67, p < Post hoc tests revealed that the differences between groups A and B and A and C were statistically reliable (respectively t(1) = 5.67, p < 0.05 & t(1) = 6.02, p <0.05). Groups B and C did not differ significantly from one another” 1 factor ANOVA
92
We covered much of this in our experimental design lecture
More than one factor Factors may be within or between Overall design may be entirely within, entirely between, or mixed Many F-ratios may be computed An F-ratio is computed to test the main effect of each factor An F-ratio is computed to test each of the potential interactions between the factors Factorial ANOVAs
93
Factorial designs Consider the results of our class experiment X ✓ ✓
Main effect of cell phone X Main effect of site type ✓ An Interaction between cell phone and site type ✓ -0.50 0.04 Factorial designs Resource: Dr. Kahn's reporting stats page
94
Factorial ANOVAs Reporting your results The observed differences
Because there may be a lot of these, may present them in a table instead of directly in the text Kind of design e.g. “2 x 2 completely between factorial design” Computed F-ratios May see separate paragraphs for each factor, and for interactions Degrees of freedom for the test Each F-ratio will have its own set of df’s The “p-value” of the test May want to just say “all tests were tested with an alpha level of 0.05” Any post-hoc or planned comparison results Typically only the theoretically interesting comparisons are presented Factorial ANOVAs
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.