Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chaper 4: Continuous-time interest rate models

Similar presentations


Presentation on theme: "Chaper 4: Continuous-time interest rate models"โ€” Presentation transcript:

1 Chaper 4: Continuous-time interest rate models
Lin Heng-Li December 5, 2011

2 4.3 The PDE Approach to Pricing
The general principles in this development are that ๐‘Ÿ(๐‘ก) is Markov Prices ๐‘ƒ(๐‘ก,๐‘‡) depend upon an assessment at time t of how ๐‘Ÿ(๐‘ ) will vary between t and T The market is efficient, without transaction costs and all investors are rational.

3 4.3 The PDE Approach to Pricing
Suppose that ๐‘‘๐‘Ÿ ๐‘ก =๐‘Ž ๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘ ๐‘Ÿ ๐‘ก ๐‘‘๐‘Š(๐‘ก) ๐‘‘๐‘ƒ ๐‘ก,๐‘‡ =๐‘ƒ ๐‘ก,๐‘‡ [๐‘š ๐‘ก,๐‘‡ ๐‘‘๐‘ก+๐‘† ๐‘ก,๐‘‡ ๐‘‘๐‘Š ๐‘ก ] Where W(t) is a Brownian motion under P The first two principles ensure that ๐‘Ž ๐‘ก =๐‘Ž(๐‘ก,๐‘Ÿ ๐‘ก ) ๐‘ ๐‘ก =๐‘ ๐‘ก,๐‘Ÿ ๐‘ก ๐‘ƒ ๐‘ก,๐‘‡ =๐‘ƒ(๐‘ก,๐‘‡,๐‘Ÿ(๐‘ก)) Thus, under a one-factor model, price changes for all bonds with different maturity dates are perfectly (but none-linearly) correlated. ่ชฒๆœฌpage 60

4 4.3 The PDE Approach to Pricing
By Itรดโ€™s lemma ๐‘‘๐‘ƒ= ๐œ•๐‘ƒ ๐œ•๐‘ก ๐‘‘๐‘ก+ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘‘๐‘Ÿ ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 ๐‘‘๐‘Ÿ 2 = ๐œ•๐‘ƒ ๐œ•๐‘ก ๐‘‘๐‘ก+ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘Ž๐‘‘๐‘ก+๐‘๐‘‘๐‘Š ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 ๐‘ 2 ๐‘‘๐‘ก = ๐œ•๐‘ƒ ๐œ•๐‘ก +๐‘Ž ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 ๐‘‘๐‘ก+๐‘ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘‘๐‘Š Where ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ = 1 ๐‘ƒ ๐œ•๐‘ƒ ๐œ•๐‘ก +๐‘Ž ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ ๐‘† ๐‘ก,๐‘‡,๐‘Ÿ = 1 ๐‘ƒ ๐‘ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ m(t,T,r)่ˆ‡S(t,T,r)ไน‹ๆ‰€ไปฅๆœƒๆœ‰1/Pๅฏๅฐ็…งๅ‰ไธ€ๅผตๆŠ•ๅฝฑ็‰‡ (a.1) (a.2)

5 4.3 The PDE Approach to Pricing
Consider two bonds with different maturity dates T1and T2 ( ๐‘‡ 1 < ๐‘‡ 2 ) At time t, suppose that we hold amounts โˆ’ ๐‘‰ 1 (๐‘ก) in the ๐‘‡ 1 -bond and ๐‘‰ 2 (๐‘ก) in the ๐‘‡ 2 - bond Total wealth ๐‘‰ ๐‘ก = ๐‘‰ 2 ๐‘ก โˆ’ ๐‘‰ 1 ๐‘ก Begin to consider the market price of risk (1)

6 4.3 The PDE Approach to Pricing
The instantaneous investment gain from t to t+dt is ๐‘‘๐‘‰ ๐‘ก =โˆ’ ๐‘‰ 1 ๐‘ก ๐‘ƒ ๐‘ก, ๐‘‡ 1 ๐‘‘๐‘ƒ ๐‘ก, ๐‘‡ ๐‘‰ 2 ๐‘ก ๐‘ƒ ๐‘ก, ๐‘‡ 2 ๐‘‘๐‘ƒ ๐‘ก, ๐‘‡ 2 =โˆ’ ๐‘‰ 1 ๐‘ก ๐‘š 1 ๐‘‘๐‘ก+ ๐‘† 1 ๐‘‘๐‘Š + ๐‘‰ 2 ๐‘ก ๐‘š 2 ๐‘‘๐‘ก+ ๐‘† 2 ๐‘‘๐‘Š = ๐‘‰ 2 ๐‘š 2 โˆ’ ๐‘‰ 1 ๐‘š 1 ๐‘‘๐‘ก+ ๐‘‰ 2 ๐‘† 2 โˆ’ ๐‘‰ 1 ๐‘† 1 ๐‘‘๐‘Š for notational compactness, we write mi=m(t,Ti,r(t))

7 4.3 The PDE Approach to Pricing
We will vary ๐‘‰ 1 (๐‘ก) and ๐‘‰ 2 (๐‘ก) in such a way that the portfolio is risk-free. Suppose that, for all t, ๐‘‰ 1 (๐‘ก) ๐‘‰ 2 (๐‘ก) = ๐‘†(๐‘ก, ๐‘‡ 2 ,๐‘Ÿ ๐‘ก ) ๐‘†(๐‘ก, ๐‘‡ 1 ,๐‘Ÿ ๐‘ก ) = ๐‘† 2 ๐‘† 1 then ๐‘‰ 2 ๐‘† 2 โˆ’ ๐‘‰ 1 ๐‘‰ 1 ๐‘† 1 =0 (2)

8 4.3 The PDE Approach to Pricing
Hence, the instantaneous investment gain ๐‘‘๐‘‰ ๐‘ก = ๐‘‰ 2 ๐‘š 2 โˆ’ ๐‘‰ 1 ๐‘š 1 ๐‘‘๐‘ก+ ๐‘‰ 2 ๐‘† 2 โˆ’ ๐‘‰ 1 ๐‘† 1 ๐‘‘๐‘Š =๐‘‰ ๐‘š 2 ๐‘† 1 โˆ’ ๐‘š 1 ๐‘† 2 ๐‘† 1 โˆ’ ๐‘† 2 ๐‘‘๐‘ก

9 4.3 The PDE Approach to Pricing
This must be true for all maturities. Thus, for all T>t ๐‘š(๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก )โˆ’๐‘Ÿ(๐‘ก) ๐‘†(๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ) =๐›พ(๐‘ก,๐‘Ÿ ๐‘ก ) ๐›พ(๐‘ก,๐‘Ÿ ๐‘ก ) is the market price of risk. Cannot depend on the maturity date Can often be negative. (Since ๐œ•๐‘ƒ ๐œ•๐‘Ÿ is usually negative, suppose the volatility ๐‘ ๐‘ก,๐‘Ÿ ๐‘ก be positive, we have ๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก <0. Thus, ๐›พ(๐‘ก,๐‘Ÿ ๐‘ก ) must be negative to ensure that expected returns are greater than the risk-free rate.) (b)

10 4.3 The PDE Approach to Pricing
From (b), we have ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ =๐‘Ÿ ๐‘ก +๐›พ ๐‘ก,๐‘Ÿ ๐‘†(๐‘ก,๐‘‡,๐‘Ÿ) And from (a.1) ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ = 1 ๐‘ƒ ๐œ•๐‘ƒ ๐œ•๐‘ก +๐‘Ž ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 Equate the two expressions, ๐œ•๐‘ƒ ๐œ•๐‘ก + ๐‘Žโˆ’๐‘๐›พ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 โˆ’๐‘Ÿ๐‘ƒ=0

11 4.3 The PDE Approach to Pricing
This is a suitable form to apply the Feynman- Kac formula ๐œ•๐‘ƒ ๐œ•๐‘ก +๐‘“ ๐‘ก,๐‘Ÿ ๐œ•๐‘ƒ ๐œ•๐‘Ÿ ๐œŒ 2 ๐‘ก,๐‘Ÿ ๐œ• 2 ๐‘ƒ ๐œ•๐‘Ÿ 2 โˆ’๐‘… ๐‘Ÿ ๐‘ƒ+โ„Ž(๐‘ก,๐‘Ÿ)=0 ๐‘“ ๐‘ก,๐‘Ÿ =aโˆ’ฮณ๐‘ ๐œŒ ๐‘ก,๐‘Ÿ =๐‘ ๐‘ก,๐‘Ÿ ๐‘…(๐‘Ÿ)=๐‘Ÿ โ„Ž(๐‘ก,๐‘Ÿ)=0 The boundary condition for this PDE ๐‘ƒ ๐‘‡,๐‘‡,๐‘Ÿ =๐›น ๐‘Ÿ =1

12 4.3 The PDE Approach to Pricing
By the Feynman-Kac formula there exists a suitable probability triple (ฮฉ,โ„ฑ,๐‘„) with filtration โ„ฑ ๐‘ก :0โ‰ค๐‘ก<โˆž under which ๐‘ƒ ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก = ๐ธ ๐‘„ [expโก(โˆ’ ๐‘ก ๐‘‡ ๐‘Ÿ ๐‘  ๐‘‘๐‘  )| โ„ฑ ๐‘ก ] ๐‘Ÿ (s) (๐‘กโ‰ค๐‘ โ‰ค๐‘‡) is a Markov diffusion process with ๐‘Ÿ ๐‘ก =๐‘Ÿ ๐‘ก Under the measure Q, ๐‘Ÿ (๐‘ข) satisfies the SDE ๐‘‘ ๐‘Ÿ ๐‘ข =๐‘“ ๐‘ข, ๐‘Ÿ ๐‘ข ๐‘‘๐‘ข+๐œŒ ๐‘ข, ๐‘Ÿ ๐‘ข ๐‘‘ ๐‘Š ๐‘ข = aโˆ’ฮณ๐‘ ๐‘‘๐‘ข+๐‘๐‘‘ ๐‘Š ๐‘ข ๐‘Š ๐‘ข is a standard Brownian motion under Q ่ชฒๆœฌ246~248้ 

13 4.3 The PDE Approach to Pricing
Suppose that ๐›พ ๐‘ ,๐‘Ÿ(๐‘ ) satisfies the Novikov condition ๐ธ ๐‘„ exp ๐‘‡ ๐›พ ๐‘ ,๐‘Ÿ ๐‘  2 ๐‘‘๐‘  <โˆž We define ๐‘Š ๐‘ก =๐‘Š ๐‘ก + 0 ๐‘ก ๐›พ ๐‘ ,๐‘Ÿ(๐‘ ) ๐‘‘๐‘  By Girsanov Theorem, there exists an equivalent measure Q under which ๐‘Š ๐‘ก (for 0โ‰ค๐‘กโ‰ค๐‘‡) is a Brownian motion and with Radon-Nikodym derivative ๐‘‘๐‘„ ๐‘‘๐‘ƒ =expโก[โˆ’ 0 ๐‘‡ ๐›พ ๐‘ก,๐‘Ÿ ๐‘ก ๐‘‘๐‘Š(๐‘ก) โˆ’ ๐‘‡ ๐›พ ๐‘ก,๐‘Ÿ ๐‘ก 2 ๐‘‘๐‘ก ] ๅŽŸๆœฌ็š„ๆจกๅž‹ r= a dt + b dW ๆ˜ฏๅœจPๆธฌๅบฆๅบ•ไธ‹็š„ ๆˆ‘ๅ€‘ๅฟ…้ ˆ่ญ‰ๆ˜ŽP Q ๅ…ฉ็จฎๆธฌๅบฆ็ด„็•ถ(็ญ‰ๅƒน) ๆ‰่ƒฝ้€ฒ่กŒๅฅ—็”จ

14 4.3 The PDE Approach to Pricing
Note that we have ๐‘‘๐‘ƒ ๐‘ก,๐‘‡ =๐‘ƒ ๐‘ก,๐‘‡ ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘๐‘Š =๐‘ƒ ๐‘ก,๐‘‡ [๐‘š ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘†(๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ){๐‘‘ ๐‘Š โˆ’๐›พ ๐‘ก,๐‘Ÿ ๐‘ก ๐‘‘๐‘ก} =๐‘ƒ ๐‘ก,๐‘‡ ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก โˆ’๐›พ ๐‘ก,๐‘Ÿ ๐‘ก ๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘ ๐‘Š ๐‘š ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก โˆ’๐›พ ๐‘ก,๐‘Ÿ ๐‘ก ๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘ ๐‘Š =๐‘ƒ ๐‘ก,๐‘‡ (๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+ ๐‘† ๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ๐‘‘ ๐‘Š ) ๅ› ๆญค ๅœจๅดๅบฆQๅบ•ไธ‹ ไปปไฝ•ๅ‚ตๅˆธ็š„ๆœŸๆœ›ๅ ฑ้…ฌ็š†็ญ‰ๆ–ผ็„ก้ขจ้šชๅˆฉ็Ž‡ rf Qๆ˜ฏไธ€ๅ€‹้ขจ้šชไธญ็ซ‹ๆธฌๅบฆ

15 4.3 The PDE Approach to Pricing
The Feynman-Kac formula can be applied to interest rate derivative contracts. Let ๐‘‰ ๐‘ก be the price at time t of a derivative which will have only a payoff to the holder of ๐›น ๐‘Ÿ(๐‘‡) at time T

16 4.3 The PDE Approach to Pricing
Suppose that ๐‘‘๐‘Ÿ ๐‘ก =๐‘Ž ๐‘Ÿ ๐‘ก ๐‘‘๐‘ก+๐‘ ๐‘Ÿ ๐‘ก ๐‘‘๐‘Š(๐‘ก) ๐‘‘๐‘‰ ๐‘ก,๐‘‡,๐‘Ÿ =๐‘‰ ๐‘ก,๐‘‡,๐‘Ÿ [๐‘šโ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ ๐‘‘๐‘ก+๐‘†โ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ ๐‘‘๐‘Š ๐‘ก ] By Itรดโ€™s lemma dV= ๐œ•๐‘‰ ๐œ•๐‘ก +๐‘Ž ๐œ•๐‘‰ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ 2 ๐‘‘๐‘ก+๐‘ ๐œ•๐‘‰ ๐œ•๐‘Ÿ ๐‘‘๐‘Š ๐‘šโ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ = 1 ๐‘‰ ๐œ•๐‘‰ ๐œ•๐‘ก +๐‘Ž ๐œ•๐‘‰ ๐œ•๐‘Ÿ ๐‘ 2 ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ 2 ๐‘†โ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ = 1 ๐‘‰ ๐‘ ๐œ•๐‘‰ ๐œ•๐‘Ÿ From market price of risk ๐›พ ๐‘ก,๐‘Ÿ ๐‘ก = ๐‘šโ€ฒ(๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก )โˆ’๐‘Ÿ(๐‘ก) ๐‘†โ€ฒ(๐‘ก,๐‘‡,๐‘Ÿ ๐‘ก ) ๐‘šโ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ =๐‘Ÿ ๐‘ก +๐›พ ๐‘ก,๐‘Ÿ ๐‘†โ€ฒ ๐‘ก,๐‘‡,๐‘Ÿ

17 4.3 The PDE Approach to Pricing
From above, we will have ๐œ•๐‘‰ ๐œ•๐‘ก + aโˆ’ฮณ๐‘ ๐œ•๐‘‰ ๐œ•๐‘Ÿ ๐‘ 2 ๐‘ก,๐‘Ÿ ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ 2 โˆ’๐‘Ÿ ๐‘ก ๐‘‰=0 Apply to Feynman-Kac formula ๐œ•๐‘‰ ๐œ•๐‘ก +๐‘“ ๐‘ก,๐‘Ÿ ๐œ•๐‘‰ ๐œ•๐‘Ÿ ๐œŒ 2 ๐‘ก,๐‘Ÿ ๐œ• 2 ๐‘‰ ๐œ•๐‘Ÿ 2 +โ„Ž(๐‘ก,๐‘Ÿ)โˆ’๐‘… ๐‘Ÿ ๐‘‰=0 subject to ๐‘‰ ๐‘‡ =๐›น ๐‘Ÿ(๐‘‡) ๐‘“ ๐‘ก,๐‘Ÿ =aโˆ’ฮณ๐‘ ๐œŒ ๐‘ก,๐‘Ÿ =๐‘ ๐‘ก,๐‘Ÿ ๐‘…(๐‘Ÿ)=๐‘Ÿ โ„Ž(๐‘ก,๐‘Ÿ)=0

18 4.3 The PDE Approach to Pricing
By the Feynman-Kac formula , we have V t = ๐ธ ๐‘„ exp โˆ’ ๐‘ก ๐‘‡ ๐‘Ÿ ๐‘  ๐‘‘๐‘  ๐›น ๐‘Ÿ ๐‘‡ โ„ฑ ๐‘ก where ๐‘‘ ๐‘Ÿ ๐‘ข =๐‘“ ๐‘ข, ๐‘Ÿ ๐‘ข ๐‘‘๐‘ข+๐œŒ ๐‘ข, ๐‘Ÿ ๐‘ข ๐‘‘ ๐‘Š ๐‘ข = aโˆ’ฮณ๐‘ ๐‘‘๐‘ข+๐‘๐‘‘ ๐‘Š ๐‘ข =๐‘Žโˆ—๐‘‘๐‘ข+๐‘โˆ— ๐‘‘ ๐‘Š ๐‘ข โˆ’ฮณ๐‘‘๐‘ข =๐‘Žโˆ—๐‘‘๐‘ข+๐‘โˆ—๐‘‘๐‘Š =๐‘‘๐‘Ÿ(๐‘ข)


Download ppt "Chaper 4: Continuous-time interest rate models"

Similar presentations


Ads by Google