Download presentation
Presentation is loading. Please wait.
1
Chaper 4: Continuous-time interest rate models
Lin Heng-Li December 5, 2011
2
4.3 The PDE Approach to Pricing
The general principles in this development are that ๐(๐ก) is Markov Prices ๐(๐ก,๐) depend upon an assessment at time t of how ๐(๐ ) will vary between t and T The market is efficient, without transaction costs and all investors are rational.
3
4.3 The PDE Approach to Pricing
Suppose that ๐๐ ๐ก =๐ ๐ ๐ก ๐๐ก+๐ ๐ ๐ก ๐๐(๐ก) ๐๐ ๐ก,๐ =๐ ๐ก,๐ [๐ ๐ก,๐ ๐๐ก+๐ ๐ก,๐ ๐๐ ๐ก ] Where W(t) is a Brownian motion under P The first two principles ensure that ๐ ๐ก =๐(๐ก,๐ ๐ก ) ๐ ๐ก =๐ ๐ก,๐ ๐ก ๐ ๐ก,๐ =๐(๐ก,๐,๐(๐ก)) Thus, under a one-factor model, price changes for all bonds with different maturity dates are perfectly (but none-linearly) correlated. ่ชฒๆฌpage 60
4
4.3 The PDE Approach to Pricing
By Itรดโs lemma ๐๐= ๐๐ ๐๐ก ๐๐ก+ ๐๐ ๐๐ ๐๐ ๐ 2 ๐ ๐๐ 2 ๐๐ 2 = ๐๐ ๐๐ก ๐๐ก+ ๐๐ ๐๐ ๐๐๐ก+๐๐๐ ๐ 2 ๐ ๐๐ 2 ๐ 2 ๐๐ก = ๐๐ ๐๐ก +๐ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ 2 ๐๐ก+๐ ๐๐ ๐๐ ๐๐ Where ๐ ๐ก,๐,๐ = 1 ๐ ๐๐ ๐๐ก +๐ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ ๐ ๐ก,๐,๐ = 1 ๐ ๐ ๐๐ ๐๐ m(t,T,r)่S(t,T,r)ไนๆไปฅๆๆ1/Pๅฏๅฐ็
งๅไธๅผตๆๅฝฑ็ (a.1) (a.2)
5
4.3 The PDE Approach to Pricing
Consider two bonds with different maturity dates T1and T2 ( ๐ 1 < ๐ 2 ) At time t, suppose that we hold amounts โ ๐ 1 (๐ก) in the ๐ 1 -bond and ๐ 2 (๐ก) in the ๐ 2 - bond Total wealth ๐ ๐ก = ๐ 2 ๐ก โ ๐ 1 ๐ก Begin to consider the market price of risk (1)
6
4.3 The PDE Approach to Pricing
The instantaneous investment gain from t to t+dt is ๐๐ ๐ก =โ ๐ 1 ๐ก ๐ ๐ก, ๐ 1 ๐๐ ๐ก, ๐ ๐ 2 ๐ก ๐ ๐ก, ๐ 2 ๐๐ ๐ก, ๐ 2 =โ ๐ 1 ๐ก ๐ 1 ๐๐ก+ ๐ 1 ๐๐ + ๐ 2 ๐ก ๐ 2 ๐๐ก+ ๐ 2 ๐๐ = ๐ 2 ๐ 2 โ ๐ 1 ๐ 1 ๐๐ก+ ๐ 2 ๐ 2 โ ๐ 1 ๐ 1 ๐๐ for notational compactness, we write mi=m(t,Ti,r(t))
7
4.3 The PDE Approach to Pricing
We will vary ๐ 1 (๐ก) and ๐ 2 (๐ก) in such a way that the portfolio is risk-free. Suppose that, for all t, ๐ 1 (๐ก) ๐ 2 (๐ก) = ๐(๐ก, ๐ 2 ,๐ ๐ก ) ๐(๐ก, ๐ 1 ,๐ ๐ก ) = ๐ 2 ๐ 1 then ๐ 2 ๐ 2 โ ๐ 1 ๐ 1 ๐ 1 =0 (2)
8
4.3 The PDE Approach to Pricing
Hence, the instantaneous investment gain ๐๐ ๐ก = ๐ 2 ๐ 2 โ ๐ 1 ๐ 1 ๐๐ก+ ๐ 2 ๐ 2 โ ๐ 1 ๐ 1 ๐๐ =๐ ๐ 2 ๐ 1 โ ๐ 1 ๐ 2 ๐ 1 โ ๐ 2 ๐๐ก
9
4.3 The PDE Approach to Pricing
This must be true for all maturities. Thus, for all T>t ๐(๐ก,๐,๐ ๐ก )โ๐(๐ก) ๐(๐ก,๐,๐ ๐ก ) =๐พ(๐ก,๐ ๐ก ) ๐พ(๐ก,๐ ๐ก ) is the market price of risk. Cannot depend on the maturity date Can often be negative. (Since ๐๐ ๐๐ is usually negative, suppose the volatility ๐ ๐ก,๐ ๐ก be positive, we have ๐ ๐ก,๐,๐ ๐ก <0. Thus, ๐พ(๐ก,๐ ๐ก ) must be negative to ensure that expected returns are greater than the risk-free rate.) (b)
10
4.3 The PDE Approach to Pricing
From (b), we have ๐ ๐ก,๐,๐ =๐ ๐ก +๐พ ๐ก,๐ ๐(๐ก,๐,๐) And from (a.1) ๐ ๐ก,๐,๐ = 1 ๐ ๐๐ ๐๐ก +๐ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ 2 Equate the two expressions, ๐๐ ๐๐ก + ๐โ๐๐พ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ 2 โ๐๐=0
11
4.3 The PDE Approach to Pricing
This is a suitable form to apply the Feynman- Kac formula ๐๐ ๐๐ก +๐ ๐ก,๐ ๐๐ ๐๐ ๐ 2 ๐ก,๐ ๐ 2 ๐ ๐๐ 2 โ๐
๐ ๐+โ(๐ก,๐)=0 ๐ ๐ก,๐ =aโฮณ๐ ๐ ๐ก,๐ =๐ ๐ก,๐ ๐
(๐)=๐ โ(๐ก,๐)=0 The boundary condition for this PDE ๐ ๐,๐,๐ =๐น ๐ =1
12
4.3 The PDE Approach to Pricing
By the Feynman-Kac formula there exists a suitable probability triple (ฮฉ,โฑ,๐) with filtration โฑ ๐ก :0โค๐ก<โ under which ๐ ๐ก,๐,๐ ๐ก = ๐ธ ๐ [expโก(โ ๐ก ๐ ๐ ๐ ๐๐ )| โฑ ๐ก ] ๐ (s) (๐กโค๐ โค๐) is a Markov diffusion process with ๐ ๐ก =๐ ๐ก Under the measure Q, ๐ (๐ข) satisfies the SDE ๐ ๐ ๐ข =๐ ๐ข, ๐ ๐ข ๐๐ข+๐ ๐ข, ๐ ๐ข ๐ ๐ ๐ข = aโฮณ๐ ๐๐ข+๐๐ ๐ ๐ข ๐ ๐ข is a standard Brownian motion under Q ่ชฒๆฌ246~248้
13
4.3 The PDE Approach to Pricing
Suppose that ๐พ ๐ ,๐(๐ ) satisfies the Novikov condition ๐ธ ๐ exp ๐ ๐พ ๐ ,๐ ๐ 2 ๐๐ <โ We define ๐ ๐ก =๐ ๐ก + 0 ๐ก ๐พ ๐ ,๐(๐ ) ๐๐ By Girsanov Theorem, there exists an equivalent measure Q under which ๐ ๐ก (for 0โค๐กโค๐) is a Brownian motion and with Radon-Nikodym derivative ๐๐ ๐๐ =expโก[โ 0 ๐ ๐พ ๐ก,๐ ๐ก ๐๐(๐ก) โ ๐ ๐พ ๐ก,๐ ๐ก 2 ๐๐ก ] ๅๆฌ็ๆจกๅ r= a dt + b dW ๆฏๅจPๆธฌๅบฆๅบไธ็ ๆๅๅฟ
้ ่ญๆP Q ๅ
ฉ็จฎๆธฌๅบฆ็ด็ถ(็ญๅน) ๆ่ฝ้ฒ่กๅฅ็จ
14
4.3 The PDE Approach to Pricing
Note that we have ๐๐ ๐ก,๐ =๐ ๐ก,๐ ๐ ๐ก,๐,๐ ๐ก ๐๐ก+๐ ๐ก,๐,๐ ๐ก ๐๐ =๐ ๐ก,๐ [๐ ๐ก,๐,๐ ๐ก ๐๐ก+๐(๐ก,๐,๐ ๐ก ){๐ ๐ โ๐พ ๐ก,๐ ๐ก ๐๐ก} =๐ ๐ก,๐ ๐ ๐ก,๐,๐ ๐ก โ๐พ ๐ก,๐ ๐ก ๐ ๐ก,๐,๐ ๐ก ๐๐ก+๐ ๐ก,๐,๐ ๐ก ๐ ๐ ๐ ๐ก,๐,๐ ๐ก โ๐พ ๐ก,๐ ๐ก ๐ ๐ก,๐,๐ ๐ก ๐๐ก+๐ ๐ก,๐,๐ ๐ก ๐ ๐ =๐ ๐ก,๐ (๐ ๐ก ๐๐ก+ ๐ ๐ก,๐,๐ ๐ก ๐ ๐ ) ๅ ๆญค ๅจๅดๅบฆQๅบไธ ไปปไฝๅตๅธ็ๆๆๅ ฑ้
ฌ็็ญๆผ็ก้ขจ้ชๅฉ็ rf Qๆฏไธๅ้ขจ้ชไธญ็ซๆธฌๅบฆ
15
4.3 The PDE Approach to Pricing
The Feynman-Kac formula can be applied to interest rate derivative contracts. Let ๐ ๐ก be the price at time t of a derivative which will have only a payoff to the holder of ๐น ๐(๐) at time T
16
4.3 The PDE Approach to Pricing
Suppose that ๐๐ ๐ก =๐ ๐ ๐ก ๐๐ก+๐ ๐ ๐ก ๐๐(๐ก) ๐๐ ๐ก,๐,๐ =๐ ๐ก,๐,๐ [๐โฒ ๐ก,๐,๐ ๐๐ก+๐โฒ ๐ก,๐,๐ ๐๐ ๐ก ] By Itรดโs lemma dV= ๐๐ ๐๐ก +๐ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ 2 ๐๐ก+๐ ๐๐ ๐๐ ๐๐ ๐โฒ ๐ก,๐,๐ = 1 ๐ ๐๐ ๐๐ก +๐ ๐๐ ๐๐ ๐ 2 ๐ 2 ๐ ๐๐ 2 ๐โฒ ๐ก,๐,๐ = 1 ๐ ๐ ๐๐ ๐๐ From market price of risk ๐พ ๐ก,๐ ๐ก = ๐โฒ(๐ก,๐,๐ ๐ก )โ๐(๐ก) ๐โฒ(๐ก,๐,๐ ๐ก ) ๐โฒ ๐ก,๐,๐ =๐ ๐ก +๐พ ๐ก,๐ ๐โฒ ๐ก,๐,๐
17
4.3 The PDE Approach to Pricing
From above, we will have ๐๐ ๐๐ก + aโฮณ๐ ๐๐ ๐๐ ๐ 2 ๐ก,๐ ๐ 2 ๐ ๐๐ 2 โ๐ ๐ก ๐=0 Apply to Feynman-Kac formula ๐๐ ๐๐ก +๐ ๐ก,๐ ๐๐ ๐๐ ๐ 2 ๐ก,๐ ๐ 2 ๐ ๐๐ 2 +โ(๐ก,๐)โ๐
๐ ๐=0 subject to ๐ ๐ =๐น ๐(๐) ๐ ๐ก,๐ =aโฮณ๐ ๐ ๐ก,๐ =๐ ๐ก,๐ ๐
(๐)=๐ โ(๐ก,๐)=0
18
4.3 The PDE Approach to Pricing
By the Feynman-Kac formula , we have V t = ๐ธ ๐ exp โ ๐ก ๐ ๐ ๐ ๐๐ ๐น ๐ ๐ โฑ ๐ก where ๐ ๐ ๐ข =๐ ๐ข, ๐ ๐ข ๐๐ข+๐ ๐ข, ๐ ๐ข ๐ ๐ ๐ข = aโฮณ๐ ๐๐ข+๐๐ ๐ ๐ข =๐โ๐๐ข+๐โ ๐ ๐ ๐ข โฮณ๐๐ข =๐โ๐๐ข+๐โ๐๐ =๐๐(๐ข)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.