Presentation is loading. Please wait.

Presentation is loading. Please wait.

p #1-6, 12-17, odd, all 1. alt int 2. Corr

Similar presentations


Presentation on theme: "p #1-6, 12-17, odd, all 1. alt int 2. Corr"β€” Presentation transcript:

1 p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 1. alt int 2. Corr
1. alt int 2. Corr 3. s-s int 4. Alt int 5. Corr 6. corr 12. Corr 13. Corr 14. Alt Int 15. s-s int 16. s-s int 17. corr

2 p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 23. 𝐹𝐿 𝐡𝐻 𝐸𝐾 𝐷𝐽 𝐢𝐼
23. 𝐹𝐿 𝐡𝐻 𝐸𝐾 𝐷𝐽 𝐢𝐼 24. ED KJ GH 25. fl, eK, DJ, CI, GL, LK, JI, IH 26. Plane GHIJKL and Plane CDJI 27. ABC BCH CDJ EDJ

3 p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 30. Always 31. Sometimes
30. Always 31. Sometimes 32. Never 33. Always 34. Sometimes 35. Sometimes 36. Sometimes 37. Always 38. Sometimes 39. Sometimes

4 Chapter 3 Section 2

5 Section 3.2 Theorem 3.2 If two parallel lines are cut by a transversal, then alternate interior angles are congruent Theorem 3.3 If two parallel lines are cut by a transversal, then same side interior angles are supplementary Theorem 3.4 If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also.

6 Theorem 3.2 If two parallel lines are cut by a transversal, then alternate interior angles are congruent 𝐺𝑖𝑣𝑒𝑛:π‘˜βˆ₯𝑛;π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘Žπ‘™ 𝑑 𝑐𝑒𝑑𝑠 π‘˜ π‘Žπ‘›π‘‘ 𝑛 π‘ƒπ‘Ÿπ‘œπ‘£π‘’: ∠1 β‰… ∠2 Statement Reasons 1. π‘˜βˆ₯𝑛 1. 𝐺𝑖𝑣𝑒𝑛 2. π‘‰π‘’π‘Ÿπ‘‘ βˆ π‘  π‘Žπ‘Ÿπ‘’ β‰… 2. ∠1β‰…βˆ 3 3. 𝐼𝑓 π‘‘π‘€π‘œ βˆ₯𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’ 𝑐𝑒𝑑 𝑏𝑦 π‘Ž π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘ π‘Žπ‘™, π‘‘β„Žπ‘’π‘› π‘π‘œπ‘Ÿπ‘Ÿ βˆ π‘  π‘Žπ‘Ÿπ‘’ β‰… 3. ∠3β‰…βˆ 2 4. π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘–π‘‘π‘–π‘£π‘’ π‘ƒπ‘Ÿπ‘œπ‘π‘’π‘Ÿπ‘‘π‘¦ 4. ∠1β‰…βˆ 2

7 Theorem 3.3 If two parallel lines are cut by a transversal, then same side interior angles are supplementary 𝐺𝑖𝑣𝑒𝑛:π‘˜βˆ₯𝑛;π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘Žπ‘™ 𝑑 𝑐𝑒𝑑𝑠 π‘˜ π‘Žπ‘›π‘‘ 𝑛 π‘ƒπ‘Ÿπ‘œπ‘£π‘’: ∠1 𝑖𝑠 π‘ π‘’π‘π‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘‘π‘œ ∠4 Statement Reasons 1. π‘˜βˆ₯𝑛 1. 𝐺𝑖𝑣𝑒𝑛 2. βˆ π΄π‘‘π‘‘ π‘ƒπ‘œπ‘ π‘‘ 2. ∠2+∠4=180 3. ∠2 𝑖𝑠 𝑠𝑒𝑝𝑝 π‘‘π‘œ ∠4 3. 𝐼𝑓 π‘‘π‘€π‘œ βˆ π‘  β„Žπ‘Žπ‘£π‘’ π‘Ž π‘ π‘’π‘š π‘œπ‘“ 180, π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ βˆ π‘  π‘Žπ‘Ÿπ‘’ 𝑠𝑒𝑝𝑝 4. 𝐼𝑓 2 βˆ₯ 𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’ 𝑐𝑒𝑑 𝑏𝑦 π‘Ž π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘ π‘Žπ‘™ π‘‘β„Žπ‘’ π‘Žπ‘™π‘‘ 𝑖𝑛𝑑 βˆ π‘Žπ‘Ÿπ‘’β‰… 4. ∠1β‰…βˆ 2 5. ∠1 𝑖𝑠 𝑠𝑒𝑝𝑝 π‘‘π‘œ ∠4 5. π‘ π‘’π‘π‘ π‘‘π‘–π‘‘π‘’π‘‘π‘–π‘œπ‘›

8 Theorem 3.4 If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also. 𝐺𝑖𝑣𝑒𝑛:𝑙βˆ₯𝑛;π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘Žπ‘™ 𝑑 𝑐𝑒𝑑𝑠 π‘˜ π‘Žπ‘›π‘‘ 𝑛;𝑑βŠ₯𝑙 π‘ƒπ‘Ÿπ‘œπ‘£π‘’:𝑑βŠ₯𝑛 Statement Reasons 1. 𝑑βŠ₯𝑙;𝑑βŠ₯𝑛;π‘‘π‘Ÿπ‘Žπ‘›π‘  𝑑 𝑐𝑒𝑑𝑠 π‘˜ π‘Žπ‘›π‘‘ 𝑛 1. 𝐺𝑖𝑣𝑒𝑛 2. 𝐼𝑓 π‘‘π‘€π‘œ 𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’βŠ₯, π‘‘β„Žπ‘’π‘¦ π‘“π‘œπ‘Ÿπ‘š π‘Ž 90 ∠ 2. ∠1=90 3. ∠2β‰…βˆ 1 3. 𝐼𝑓 π‘Ž π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘ π‘Žπ‘™ 𝑐𝑒𝑑𝑠 π‘‘π‘€π‘œβˆ₯𝑙𝑖𝑛𝑒𝑠, π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ π‘π‘œπ‘Ÿπ‘Ÿ βˆ π‘  π‘Žπ‘Ÿπ‘’β‰… 4. π‘ π‘’π‘π‘ π‘‘π‘–π‘‘π‘’π‘‘π‘–π‘œπ‘› 4. ∠2=90 5. 𝑑βŠ₯𝑛 5. 𝑖𝑓 2 𝑙𝑖𝑛𝑒𝑠 π‘“π‘œπ‘Ÿ π‘Ž 90∠ π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ π‘‘π‘€π‘œ 𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’ βŠ₯

9

10 2. If 2 ll lines are cut by a transversal, then the Corr angles are congruent
3. If 2 ll lines are cut by a transversal, then the Alt Int angles are cong 4. If 2 ll lines are cut by a transversal then s-s-int angles are sup 5. If 2 ll lines are cut by a transversal, then corr angles are cong 6. If 2 ll lines are cut by a transversal, then alt int angles are cong 7. Vertical angles are congruent 8. If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also 9. If 2 ll lines are cut by a transversal then s-s int angles are supp ,50 11. x, 180-x 12. 60

11 Homework: Pages 80-82 Written Exercises 1-11 odd, 15, 19, BRING COMPASS TO NEXT CLASS


Download ppt "p #1-6, 12-17, odd, all 1. alt int 2. Corr"

Similar presentations


Ads by Google