Download presentation
Presentation is loading. Please wait.
1
p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 1. alt int 2. Corr
1. alt int 2. Corr 3. s-s int 4. Alt int 5. Corr 6. corr 12. Corr 13. Corr 14. Alt Int 15. s-s int 16. s-s int 17. corr
2
p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 23. πΉπΏ π΅π» πΈπΎ π·π½ πΆπΌ
23. πΉπΏ π΅π» πΈπΎ π·π½ πΆπΌ 24. ED KJ GH 25. fl, eK, DJ, CI, GL, LK, JI, IH 26. Plane GHIJKL and Plane CDJI 27. ABC BCH CDJ EDJ
3
p. 76-7 #1-6, 12-17, 23-27 odd, 30-39 all 30. Always 31. Sometimes
30. Always 31. Sometimes 32. Never 33. Always 34. Sometimes 35. Sometimes 36. Sometimes 37. Always 38. Sometimes 39. Sometimes
4
Chapter 3 Section 2
5
Section 3.2 Theorem 3.2 If two parallel lines are cut by a transversal, then alternate interior angles are congruent Theorem 3.3 If two parallel lines are cut by a transversal, then same side interior angles are supplementary Theorem 3.4 If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also.
6
Theorem 3.2 If two parallel lines are cut by a transversal, then alternate interior angles are congruent πΊππ£ππ:πβ₯π;π‘ππππ π£ππππ π‘ ππ’π‘π π πππ π ππππ£π: β 1 β
β 2 Statement Reasons 1. πβ₯π 1. πΊππ£ππ 2. ππππ‘ β π πππ β
2. β 1β
β 3 3. πΌπ π‘π€π β₯πππππ πππ ππ’π‘ ππ¦ π π‘ππππ π£πππ ππ, π‘βππ ππππ β π πππ β
3. β 3β
β 2 4. πππππ ππ‘ππ£π πππππππ‘π¦ 4. β 1β
β 2
7
Theorem 3.3 If two parallel lines are cut by a transversal, then same side interior angles are supplementary πΊππ£ππ:πβ₯π;π‘ππππ π£ππππ π‘ ππ’π‘π π πππ π ππππ£π: β 1 ππ π π’ππππππππ‘πππ¦ π‘π β 4 Statement Reasons 1. πβ₯π 1. πΊππ£ππ 2. β π΄ππ πππ π‘ 2. β 2+β 4=180 3. β 2 ππ π π’ππ π‘π β 4 3. πΌπ π‘π€π β π βππ£π π π π’π ππ 180, π‘βππ π‘βπ β π πππ π π’ππ 4. πΌπ 2 β₯ πππππ πππ ππ’π‘ ππ¦ π π‘ππππ π£πππ ππ π‘βπ πππ‘ πππ‘ β πππβ
4. β 1β
β 2 5. β 1 ππ π π’ππ π‘π β 4 5. π π’ππ π‘ππ‘π’π‘πππ
8
Theorem 3.4 If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also. πΊππ£ππ:πβ₯π;π‘ππππ π£ππππ π‘ ππ’π‘π π πππ π;π‘β₯π ππππ£π:π‘β₯π Statement Reasons 1. π‘β₯π;π‘β₯π;π‘ππππ π‘ ππ’π‘π π πππ π 1. πΊππ£ππ 2. πΌπ π‘π€π πππππ πππβ₯, π‘βππ¦ ππππ π 90 β 2. β 1=90 3. β 2β
β 1 3. πΌπ π π‘ππππ π£πππ ππ ππ’π‘π π‘π€πβ₯πππππ , π‘βππ π‘βπ ππππ β π πππβ
4. π π’ππ π‘ππ‘π’π‘πππ 4. β 2=90 5. π‘β₯π 5. ππ 2 πππππ πππ π 90β π‘βππ π‘βπ π‘π€π πππππ πππ β₯
10
2. If 2 ll lines are cut by a transversal, then the Corr angles are congruent
3. If 2 ll lines are cut by a transversal, then the Alt Int angles are cong 4. If 2 ll lines are cut by a transversal then s-s-int angles are sup 5. If 2 ll lines are cut by a transversal, then corr angles are cong 6. If 2 ll lines are cut by a transversal, then alt int angles are cong 7. Vertical angles are congruent 8. If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one also 9. If 2 ll lines are cut by a transversal then s-s int angles are supp ,50 11. x, 180-x 12. 60
11
Homework: Pages 80-82 Written Exercises 1-11 odd, 15, 19, BRING COMPASS TO NEXT CLASS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.