Download presentation
Presentation is loading. Please wait.
1
Experimentele Modale Analyse
LES 1 – THEORETISCHE INLEIDING Patrick Guillaume Tel.: 02/ 4/6/2019 EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
2
Overzicht cursus Theoretische basisbegrippen Meettechnieken
Niet-parametrische schattingen Parametrische schattingen Toepassingen Gevoeligheidsanalyse FE Model “updating” “Substructuring” “Operationele” modale analyse “Structural Health Monitoring” “Flight Flutter Testing” EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
3
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
4
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
5
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
6
Frequency Response of MDOF System
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
7
Basic Equations of Motion for SDOF System
Time domain Frequency domain (Laplace) Dynamic Stiffness Z(s) (static) stiffness k Transfer function Frequency response function (FRF) x(t) f(t) EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
8
Poles of SDOF System Poles : Generalized eigenvalue problem
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
9
The SDOF Modal-Parameter Model
Pole p Re - Decay rate Im - Modal frequency Residue R Strength of the mode EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
10
Poles and Residues Amplitude of mode is not given by the residue alone
Hi-Fi turntable Car Same pole Different residues EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
11
Basic Equations for a 2-DOF System
Forces acting on mass 1 Sum forces = 0 x1(t) x2(t) f1(t) f2(t) m2 k1 c1 m1 c2 k2 EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
12
Basic Equations for a 2-DOF System
Time domain Frequency domain (Laplace) Matrix notations Dynamic stiffness matrix Transfer function matrix EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
13
FRF of 2-DOF System f2(t) m2 x2(t) f1(t) k2 c2 m1 x1(t) k1 c1 0° -180°
-360° EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
14
Multiple Degree of Freedom (MDOF)
Dynamic stiffness matrix Transfer function matrix EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
15
FREQUENCY RESPONSE FUNCTION IMPULSE RESPONSE FUNCTION
Poles of MDOF System Poles: FREQUENCY RESPONSE FUNCTION IMPULSE RESPONSE FUNCTION EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
16
Eigenvalues and Eigenvectors
No Damping EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
17
Weighted Orthogonality of Modal Vectors
Pre-multiply with Transpose the equation EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
18
Weighted Orthogonality of Modal Vectors
Substracting From eq. 1: (eq. 1) EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
19
Modal Mass and Stiffness
No Damping Modal mass and stiffness are not unique ! EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
20
Modal Coordinates EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
21
Modal Model EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
22
Modal Decomposition IRF FRF EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
23
Scaling of the Mode Shapes
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
24
Proportional Damping Eigenvalues
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
25
Proportional Damping Complex system poles and normal modal vectors
Modal mass, stiffness and damping EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
26
General Viscous Damping
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
27
General Viscous Damping
Eigenvalues and vectors Complex system poles and complex modal vectors Orthogonality EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
28
General Viscous Damping
Poles: FREQUENCY RESPONSE FUNCTION IMPULSE RESPONSE FUNCTION EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
29
General Viscous Damping
EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
30
Operational Deflection Shapes (ODS)
Resonant frequencies (peaks) Mode shapes (ODS) EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
31
Operational Deflection Shapes (ODS)
Uncoupled modes (SDOF) EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
32
Operational Deflection Shapes (ODS)
Coupled modes + = EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
33
Force Appropriation Method
Also called: Normal Mode Testing Phase Resonance Testing Traditionally used for Ground Vibration Testing (GVT) of airplanes (large structures) First method to use multiple inputs Find (mono-phased) forced vector to obtain a (mono-phased) response vector with a 90 degree phase EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
34
Force Appropriation Method
Real/imaginary part Find (mono-phased) forced vector to obtain a (mono-phased) response vector with a 90 degree phase Verification of normal mode tuning by turning off the excitations EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
35
MatLab Oefening modal_model.m SDOF MDOF Eigenwaarden en vectoren
Schaling van de eigenvectoren EXPERIMENTELE MODALE ANALYSIS, LES 1, 2005
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.