Download presentation
Presentation is loading. Please wait.
1
Warm Up Solve: Answer
2
Lesson 14 Quadratic Functions
3
Basic Quadratic Function
Also known as Second Degree Function x y -4 -3 -2 -1 1 2 3 4 16 9 4 1 1 4 9 16
4
Quadratic Function - General form
Parameters a, b & c change the graph of a function. Parameter “a” - graph on graphing calculator
5
Quadratic Function - General form
Parameter “a” - graph on graphing calculator
6
Quadratic Function - General form
Parameter "a" affects the opening of the parabola a > 1: narrows the opening a < 1: widens the opening + a (a > 0): the parabola is open upward - a (a < 0): the parabola is open downward
7
Quadratic Function - General form
Parameter “b” - graph on graphing calculator Parameter "b" creates an oblique translation of the parabola (ie diagonal shift)
8
Quadratic Function - General form
Parameter “c” - graph on graphing calculator Graph Parameter “c" is the initial value of the function (ie y-intercept)
9
Quadratic Function – Standard form
Parameters a, h & k change the graph of a function. Parameter “a” - graph on graphing calculator Graph Parameter "a" affects the opening of the parabola
10
Quadratic Function – Standard form
Parameter “h” - graph on graphing calculator Graph Parameter “h" shifts the graph horizontally (ie left and right)
11
Quadratic Function – Standard form
Parameter “k” - graph on graphing calculator Graph Parameter “k" shifts the graph vertically (ie up and down)
12
Quadratic Function – Standard form
If + a (a > 0), the parabola is open upward If - a (a < 0), the parabola is open downward The vertex of the parabola is: V (h, k) The parabola's axis of symmetry is the vertical line passing through the parabola's vertex. Its equation is : x = h Graph
13
Quadratic Function – Standard form
Ex. Find the zero(s) of the following function: Algebraically - Zero(s)
14
Quadratic Function – Standard form
Ex. Find the initial value of the following function: Algebraically - Init Val.
15
Quadratic Function – Standard form
Finding the zero(s) of the Quadratic functions: Find the zero(s) of the following function:
16
Quadratic Function – Standard form
Finding the zero(s) of the Quadratic functions: Case 1: There are two zeros Case 2: There is one zero Case 3: There are no zeros
17
Homework Workbook P. 89 #1 P. 94 #3 & 4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.