Presentation is loading. Please wait.

Presentation is loading. Please wait.

Roots of polynomials.

Similar presentations


Presentation on theme: "Roots of polynomials."β€” Presentation transcript:

1 Roots of polynomials

2 FM Roots of polynomials: Related Expressions
KUS objectives BAT find equations of polynomials from linear transformations of a given polynomial Starter: Solve π‘₯π‘₯π‘₯given that one root is 𝑧=1βˆ’π‘– π‘₯π‘₯π‘₯ π‘₯=π‘₯π‘₯π‘₯=βˆ’2±𝑖

3 Notes Given the roots of a polynomial, it is possible to find the equation of a second polynomial whose roots are a linear transformation of the first roots f(x) new roots f(x-a)

4 WB E1 The cubic equation π‘₯ 3 +3 π‘₯ 2 βˆ’8π‘₯+6=0 has roots ∝, 𝛽, 𝛾
In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž WB E1 The cubic equation π‘₯ 3 +3 π‘₯ 2 βˆ’8π‘₯+6=0 has roots ∝, 𝛽, 𝛾 Find the equations of the polynomials with roots: βˆβˆ’1 , π›½βˆ’1 π‘Žπ‘›π‘‘ (π›Ύβˆ’1) giving your answer in the form 𝑀 3 +𝑝 π‘₯ 2 +π‘žπ‘€+π‘Ÿ=0 Method 1 𝛼+𝛽+𝛾=βˆ’ 𝑏 π‘Ž =βˆ’3 𝛼𝛽+𝛼𝛾+𝛽𝛾= 𝑐 π‘Ž =βˆ’8 𝛼𝛽𝛾=βˆ’ 𝑑 π‘Ž =βˆ’6 Sum 𝛼= = 𝛼+𝛽+𝛾 βˆ’3=βˆ’6 Pair sum 𝛼𝛽= 𝛼𝛽+𝛼𝛾+𝛽𝛾 βˆ’2 𝛼+𝛽+𝛾 +3=1 Product π›Όβˆ’1 π›½βˆ’1 π›Ύβˆ’1 = = 𝛼𝛽𝛾 βˆ’ 𝛼𝛽+𝛼𝛾+𝛽𝛾 + 𝛼+𝛽+𝛾 βˆ’1=βˆ’2 So the cubic is π‘Ž π‘₯ 3 βˆ’π‘Ž 𝛼+𝛽+𝛾 π‘₯ 2 +π‘Ž 𝛼𝛽+𝛼𝛾+𝛽𝛾 π‘₯βˆ’π‘Žπ›Όπ›½π›Ύ = π’˜ πŸ‘ +πŸ” π’˜ 𝟐 +π’˜+𝟐=𝟎

5 WB E1 (cont) The cubic equation π‘₯ 3 +3 π‘₯ 2 βˆ’8π‘₯+6=0 has roots ∝, 𝛽, 𝛾
In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž WB E1 (cont) The cubic equation π‘₯ 3 +3 π‘₯ 2 βˆ’8π‘₯+6=0 has roots ∝, 𝛽, 𝛾 Find the equations of the polynomials with roots: βˆβˆ’1 , π›½βˆ’1 π‘Žπ‘›π‘‘ (π›Ύβˆ’1) giving your answer in the form 𝑀 3 +𝑝 π‘₯ 2 +π‘žπ‘€+π‘Ÿ=0 Let w=xβˆ’1 so π‘₯=𝑀+1 Method 2 Substituting 𝑀 𝑀+1 2 βˆ’8 𝑀+1 +6=0 Rearranges to … π’˜ πŸ‘ +πŸ‘ π’˜ 𝟐 +πŸ‘π’˜+𝟏+πŸ‘ π’˜ 𝟐 +πŸπ’˜+𝟏 βˆ’πŸ–π’˜βˆ’πŸ–+πŸ”=𝟎 Rearranges to π’˜ πŸ‘ +πŸ” π’˜ 𝟐 +π’˜+𝟐=𝟎

6 WB E2a The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾
In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž WB E2a The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾 Find the equations of the polynomials with roots: a) 2∝, 2𝛽 π‘Žπ‘›π‘‘ 2𝛾 b) ∝+3 , 𝛽+3 π‘Žπ‘›π‘‘ (𝛾+3) a) Method 1 𝛼+𝛽+𝛾=βˆ’ 𝑏 π‘Ž =2 𝛼𝛽+𝛼𝛾+𝛽𝛾= 𝑐 π‘Ž =3 𝛼𝛽𝛾=βˆ’ 𝑑 π‘Ž =4 Sum 𝛼 + 2𝛽 + 2𝛾 = 2 𝛼+𝛽+𝛾 =4 Pair sum 2𝛼 2𝛽 + 2𝛼 2𝛾 +(2𝛽) 2𝛾 = 4 𝛼𝛽+𝛼𝛾+𝛽𝛾 =12 Product 2𝛼 2𝛽 2𝛾 = 8 𝛼𝛽𝛾 =32 So the cubic is π‘Ž π‘₯ 3 βˆ’π‘Ž 𝛼+𝛽+𝛾 π‘₯ 2 +π‘Ž 𝛼𝛽+𝛼𝛾+𝛽𝛾 π‘₯βˆ’π‘Žπ›Όπ›½π›Ύ = π’˜ πŸ‘ βˆ’πŸ’ π’˜ 𝟐 +πŸπŸπ’˜βˆ’πŸ‘πŸ=𝟎

7 WB E2b The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾
In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž WB E2b The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾 Find the equations of the polynomials with roots: a) 2∝, 2𝛽 π‘Žπ‘›π‘‘ 2𝛾 b) ∝+3 , 𝛽+3 π‘Žπ‘›π‘‘ (𝛾+3) b) Method 1 𝛼+𝛽+𝛾=βˆ’ 𝑏 π‘Ž =2 𝛼𝛽+𝛼𝛾+𝛽𝛾= 𝑐 π‘Ž =3 𝛼𝛽𝛾=βˆ’ 𝑑 π‘Ž =4 Sum 𝛼+3 + 𝛽+3 + 𝛾+3 = 𝛼+𝛽+𝛾 +9=11 Pair sum 𝛼+3 𝛽+3 + 𝛼+3 𝛾+3 +(𝛽+3) 𝛾+3 = 𝛼𝛽+𝛼𝛾+𝛽𝛾 +6 𝛼+𝛽+𝛾 +27=42 Product 𝛼+3 𝛽+3 𝛾+3 = = 𝛼𝛽𝛾 +3 𝛼𝛽+𝛼𝛾+𝛽𝛾 +9 𝛼+𝛽+𝛾 ++27=58 So the cubic is π‘Ž π‘₯ 3 βˆ’π‘Ž 𝛼+𝛽+𝛾 π‘₯ 2 +π‘Ž 𝛼𝛽+𝛼𝛾+𝛽𝛾 π‘₯βˆ’π‘Žπ›Όπ›½π›Ύ = π’˜ πŸ‘ βˆ’πŸπŸ π’˜ 𝟐 +πŸ’πŸπ’˜βˆ’πŸ“πŸ–=𝟎

8 WB E2 (cont) The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾
In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž WB E2 (cont) The cubic equation π‘₯ 3 βˆ’2 π‘₯ 2 +3π‘₯βˆ’4=0 has roots ∝, 𝛽, 𝛾 Find the equations of the polynomials with roots: a) 2∝, 2𝛽 π‘Žπ‘›π‘‘ 2𝛾 b) ∝+3 , 𝛽+3 π‘Žπ‘›π‘‘ (𝛾+3) Let w=2x so π‘₯= 𝑀 2 a) Method 2 Substituting 𝑀 βˆ’2 𝑀 𝑀 2 βˆ’4=0 Multiply through by 8 Rearranges to π’˜ πŸ‘ βˆ’πŸ’ π’˜ 𝟐 +πŸπŸπ’˜βˆ’πŸ‘πŸ=𝟎 b) Method 2 Let w=π‘₯+3 so π‘₯=π‘€βˆ’3 Substituting π‘€βˆ’3 3 βˆ’2 π‘€βˆ’ π‘€βˆ’3 βˆ’4=0 Rearranges to π’˜ πŸ‘ βˆ’πŸπŸ π’˜ 𝟐 +πŸ’πŸπ’˜βˆ’πŸ“πŸ–=𝟎

9 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž =0
WB E The quartic equation π‘₯ 4 βˆ’3 π‘₯ 3 +15π‘₯+1=0 has roots ∝, 𝛽, 𝛾, 𝛿 Find the equation with roots: 2∝+1 , 2𝛽+1 , (2𝛾+1)π‘Žπ‘›π‘‘ (2𝛿+1) 𝛼+𝛽+𝛾+𝛿 =βˆ’ 𝑏 π‘Ž =3 In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž =0 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 =βˆ’ 𝑑 π‘Ž =βˆ’15 𝛼𝛽𝛾𝛿 = 𝑒 π‘Ž =1 𝛼= 2𝛼+1)+(2𝛽+1)+(2𝛾+1)+(2𝛿+1 =2 𝛼+𝛽+𝛾+𝛿 +4=𝟏𝟎 𝛼𝛽= 2𝛼+1 2𝛽+1 + 2𝛼+1) (2𝛾+1 + 2𝛼+1) (2𝛿+1 2𝛽+1 2𝛾+1 + 2𝛽+1 2𝛿+1 + 2𝛾+1 (2𝛿+1)= … 4 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 +6 𝛼+𝛽+𝛾+𝛿 +6 =0+18+6=πŸπŸ’

10 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž =0
WB E3(cont) The quartic equation π‘₯ 4 βˆ’3 π‘₯ 3 +15π‘₯+1=0 has roots ∝, 𝛽, 𝛾, 𝛿 Find the equation with roots: 2∝+1 , 2𝛽+1 , (2𝛾+1)π‘Žπ‘›π‘‘ (2𝛿+1) 𝛼+𝛽+𝛾+𝛿 =βˆ’ 𝑏 π‘Ž =3 In shorthand 𝛼= βˆ’ 𝑏 π‘Ž And 𝛼𝛽= 𝑐 π‘Ž And 𝛼𝛽𝛾 =βˆ’ 𝑑 π‘Ž 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 = 𝑐 π‘Ž =0 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 =βˆ’ 𝑑 π‘Ž =βˆ’15 𝛼𝛽𝛾𝛿 = 𝑒 π‘Ž =1 β€² 𝛼𝛽𝛾 β€² = 8 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 +8 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 +6 𝛼+𝛽+𝛾+𝛿 +4=βˆ’πŸ—πŸ– 2∝+1 2𝛽+1 2𝛾+1 2𝛿+1 =16 𝛼𝛽𝛾𝛿 +8 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 +4 𝛼𝛽+𝛼𝛾+𝛼𝛿+𝛽𝛾+𝛽𝛿+𝛾𝛿 +2 𝛼+𝛽+𝛾+𝛿 +1=βˆ’πŸ—πŸ• So the quartic is =π‘Ž π‘₯ 4 βˆ’π‘Ž 𝛼+𝛽+𝛾+𝛿 π‘₯ 3 +π‘Ž 𝜢𝜷+𝜢𝜸+𝜢𝜹+𝜷𝜸+𝜷𝜹+𝜸𝜹 π‘₯ 2 π‘Ž 𝛼𝛽𝛾+𝛼𝛽𝛿+𝛼𝛾𝛿+𝛽𝛾𝛿 π‘₯+π‘Žπ›Όπ›½π›Ύπ›Ώ = π’˜ πŸ’ βˆ’πŸπŸŽ π’˜ πŸ‘ +πŸπŸ’ π’˜ 𝟐 +πŸ—πŸ–π’˜βˆ’πŸ—πŸ•=𝟎

11 Substituting π‘€βˆ’1 2 4 βˆ’3 π‘€βˆ’1 2 3 +15 π‘€βˆ’1 2 +1=0
WB E3 (cont) The quartic equation π‘₯ 4 βˆ’3 π‘₯ 3 +15π‘₯+1=0 has roots ∝, 𝛽, 𝛾, 𝛿 Find the equation with roots: 2∝+1 , 2𝛽+1 , (2𝛾+1)π‘Žπ‘›π‘‘ (2𝛿+1) Let w=2x+1 so π‘₯= π‘€βˆ’1 2 Method 2 Substituting π‘€βˆ’ βˆ’3 π‘€βˆ’ π‘€βˆ’ =0 Multiply through by 16 Rearranges to … π’˜ πŸ’ βˆ’πŸ’π’˜ πŸ‘ +πŸ” π’˜ 𝟐 βˆ’πŸ’π’˜+πŸβˆ’πŸ” π’˜ πŸ‘ βˆ’πŸ‘π’˜ 𝟐 +πŸ‘π’˜βˆ’πŸ +πŸπŸπŸŽπ’˜βˆ’πŸπŸπŸŽ+πŸπŸ”=𝟎 Rearranges to π’˜ πŸ’ βˆ’πŸπŸŽπ’˜ πŸ‘ +πŸπŸ’ π’˜ 𝟐 +πŸ—πŸ–π’˜βˆ’πŸ—πŸ•=𝟎

12 NOW DO Ex 4D self-assess One thing learned is –
KUS objectives BAT find equations of polynomials from linear transformations of a given polynomial NOW DO Ex 4D self-assess One thing learned is – One thing to improve is –

13 END

14 WB 6 The region R is bounded by the curve π‘₯= 2π‘¦βˆ’1 , the y-axis and the vertical lines y=4 and y = 8
Find the volume of the solid formed when the region is rotated 2Ο€ radians about the y-axis. Give your answer as a multiple of Ο€ π‘₯= 2π‘¦βˆ’1 π‘£π‘œπ‘™π‘’π‘šπ‘’=πœ‹ π‘¦βˆ’ 𝑑𝑦 π‘£π‘œπ‘™π‘’π‘šπ‘’=πœ‹ π‘¦βˆ’1 𝑑𝑦 = πœ‹ 𝑦 2 βˆ’π‘¦ 8 4 = πœ‹ 64βˆ’8 βˆ’πœ‹ 16βˆ’4 =44πœ‹


Download ppt "Roots of polynomials."

Similar presentations


Ads by Google