Download presentation
Presentation is loading. Please wait.
Published byMitchell Lawrence Modified over 5 years ago
1
Braslunio Cromlinau Curve Sketching @mathemateg /adolygumathemateg
2
Braslunio Cromlinau / Curve Sketching
Wrth lunio braslun ar gyfer graff o ffwythiant, dylech ddangos nodweddion allweddol y ffwythiant. Y siΓ’p cyffredinol, yn cynnwys unrhyw gymesuredd. Y rhyngdoriadau π₯ ag π¦. Gallwch ddefnyddio cyfrifiannell graffigol iβch helpu fraslunioβr graff. Efallai bydd ffactorioβr ffwythiant yn eich helpu darganfod y rhyngdoriadau. Bydd yn ddefnyddiol cofio siΓ’p ffwythiannau cyffredin, a sut mae trawsffurfiadau graffiau yn effeithioβr siΓ’p. Gall datrysiadau pΓ’r o hafaliadau cydamserol gael eu dangos fel croestoriadauβr graffiau. When sketching a graph of a function, you should aim to show the key features of the function. Its general shape, including any symmetry. The π₯ and π¦ intercepts. You can use a graphical calculator to help with sketching the graph. Factorising the function may help in finding the intercepts. It will be useful to memorise the shape of some common functions, and how graph transformations affect the shape. The solutions to a pair of simultaneous equations can be shown as the intersection of both graphs.
3
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦= π₯ 2 Ffwythiant cwadratig / A quadratic function. SiΓ’p βUβ / βUβ shaped. Yn gymesur o amgylch yr echelinβπ¦ / Symmetric about the π¦βaxis. Mae gan π¦= π₯ 4 siΓ’p tebyg. / π¦= π₯ 4 has a similar shape.
4
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦=π π₯ 2 +ππ₯+π, π>0 Yn gymesur o amgylch y llinell / Symmetric about the line π₯=β π 2π . π¦=π π₯ 2 +ππ₯+π, π<0 Yn gymesur o amgylch y llinell / Symmetric about the line π₯=β π 2π . Pwynt macsimwm / Maximum point Pwynt minimwm / Minimum point
5
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦=π π₯ 2 +ππ₯+π, π>0 Ar Γ΄l cwblhauβr sgwΓ’r / After completing the square: π¦=π (π₯+π) 2 +π Y pwynt minimwm yw / The minimum point is (βπ,π). Yn gymesur o amgylch y llinell / Symmetric about the line π₯=βπ neu / or π₯=β π 2π . π¦=π π₯ 2 +ππ₯+π, π<0 Ar Γ΄l cwblhauβr sgwΓ’r / After completing the square: π¦=π (π₯+π) 2 +π Y pwynt macsimwm yw / The maximum point is (βπ,π). Yn gymesur o amgylch y llinell / Symmetric about the line π₯=βπ neu / or π₯=β π 2π . Pwynt macsimwm / Maximum point Pwynt minimwm / Minimum point
6
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦= π₯ 3 Ffwythiant ciwbig / A cubic function. SiΓ’p βSβ / βSβ shaped. Mae gan π¦= π₯ 5 siΓ’p tebyg. / π¦= π₯ 5 has a similar shape.
7
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦=π π₯ 3 +π π₯ 2 +ππ₯+π, π>0 neu / or π¦=π π₯ 3 +π π₯ 2 +ππ₯+π, π<0 neu / or Pwynt macsimwm / Maximum point Pwynt ffurfdro / Inflection point Pwynt macsimwm / Maximum point Pwynt ffurfdro / Inflection point Pwynt minimwm / Minimum point Pwynt minimwm / Minimum point
8
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦= 1 π₯ Ffwythiant cilyddol / A reciprocal function. Heb ei ddiffinio ar gyfer π₯=0 / Not defined for π₯=0. Maeβr echelinau π₯ ag π¦ yn asymptotau / The π₯ and π¦ axes are asymptotes.
9
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦= 1 π₯ 2 Ffwythiant cilyddol / A reciprocal function. Heb ei ddiffinio ar gyfer π₯=0 / Not defined for π₯=0. Maeβr echelinau π₯ ag π¦ yn asymptotau / The π₯ and π¦ axes are asymptotes.
10
Rhai Ffwythiannau Cyffredin / Some Common Functions
π¦=ππ₯+π Ffwythiant llinol / A linear function. Graddiant π / Gradient π. Rhyngdoriadβπ¦ yn (0,c) / π¦βintercept at 0,π . (0,2) (β 2 3 ,0) π¦=3π₯+2
11
Graff Cyfrannedd Union / Direct Proportion Graph
π¦βπ₯ π¦=ππ₯ Ffwythiant llinol / A linear function. Graddiant π / Gradient π. Rhyngdoriadβπ¦ yn (0,0) / π¦βintercept at 0,0 . π¦=ππ₯
12
Graff Cyfrannedd Gwrthdro / Inverse Proportion Graph
π¦β 1 π₯ π¦= π π₯ Ffwythiant cilyddol / A reciprocal function. Maeβr echelinau π₯ ag π¦ yn asymptotau / The π₯ and π¦ axes are asymptotes. π¦= π π₯
13
Graff Cyfrannedd Gwrthdro / Inverse Proportion Graph
π¦ π¦β 1 π₯ π¦= π π₯ Ffwythiant cilyddol / A reciprocal function. Wrth blotio π¦ yn erbyn 1 π₯ cawn ffwythiant llinol sydd efo graddiant π. By plotting π¦ against 1 π₯ we obtain a linear function with gradient π. π¦= π π₯ 1 π₯
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.