Download presentation
Presentation is loading. Please wait.
Published byCandace Osborne Modified over 5 years ago
1
Logarithmau 3 Logarithms 3 @mathemateg /adolygumathemateg
2
Ffitio Cromlinau / Curve Fitting
O gael gwerthoedd ar gyfer π₯ ag π¦, efallai o arbrawf, maeβn bosib defnyddio logarithmau i weld os ywβr dataβn ffitio perthynas oβr ffurf π¦=π π₯ π neu π¦=π π π₯ . Given values for π₯ and π¦, possibly from an experiment, it is possible to use logarithms to see if the data fits a relationship of the form π¦=π π₯ π or π¦=π π π₯ .
3
Ffitio Cromlinau / Curve Fitting
(1) Ydiβr data oβr ffurf / Is the data of the form π¦=π π₯ π ? π¦=π π₯ π log π¦ = log (π π₯ π ) Cymryd log (bΓ΄n 10) o bob ochr / Taking logs (base 10) of each side log (π¦) = log (π) + log ( π₯ π ) Rheolau logarithm / Rules of logarithms log (π¦) = log (π) +π log (π₯) Rheolau logarithm / Rules of logarithms log (π¦) =π log (π₯) + log (π) Ail-drefnu / Re-arranging Yn cymharu efo / comparing with π¦=ππ₯+π, byddai plotio log (π₯) yn erbyn log (π¦) yn rhoi llinell syth efo graddiant π a rhyngdoriadβπ¦ log (π) / plotting log (π₯) against log (π¦) would give a straight line with gradient π and π¦βintercept log (π) . Model polynomial / A polynomial model
4
Ffitio Cromlinau / Curve Fitting
Enghraifft / Example Casglwyd data mewn arbrawf am newidynnau π₯ ag π¦. Defnyddiwch y gwerthoedd data oβr tabl i ysgrifennuβr berthynas rhwng π₯ ag π¦ yn y ffurf π¦=π π₯ π . Data was collected in an experiment about the variables π₯ and π¦. Use the data values in the table to write the relationship between π₯ and π¦ in the form π¦=π π₯ π . Gallwn ffurfioβr tabl isod i dangos gwerthoedd log (π₯) a log (π¦) , ac ynaβu plotio ar ddiagram gwasgariad. We can form the following table to show the values of log (π₯) and log (π¦) , and then plot them on a scatter diagram. π 10 20 30 40 50 π¦ 158 549 1140 1913 2858 log (π) 1 1.3010 1.4771 1.6021 1.6990 log (π¦) 2.1987 2.7396 3.0569 3.2817 3.4561
5
Ffitio Cromlinau / Curve Fitting
log (π) 1 1.3010 1.4771 1.6021 1.6990 log (π¦) 2.1987 2.7396 3.0569 3.2817 3.4561 log (π¦) Graddiant y graff yw tua / The gradient of the graph is approximately 3.6Γ·2=1.8. Rhyngdoriadβπ¦ y graff yw tua / The π¦βintercept of the graph is approximately 0.4. Yn cymharu efo / Comparing with log (π¦) =π log (π₯) + log (π) mae gennym / we have log (π¦) =1.8 log π₯ Felly / Therefore π= π=2.51 (i 2 l.d. / to 2 d.p.). Yn cymharu efo / Comparing with π¦=π π₯ π mae gennym y model / we have the model π¦=2.51 π₯ 1.8 . Llinell ffit orau / Line of best fit 4β0.4=3.6 2β0=2 log (π₯)
6
Ffitio Cromlinau / Curve Fitting
(2) Ydiβr data oβr ffurf / Is the data of the form π¦=π π π₯ ? π¦=π π π₯ log π¦ = log (π π π₯ ) Cymryd log (bΓ΄n 10) o bob ochr / Taking logs (base 10) of each side log (π¦) = log (π) + log ( π π₯ ) Rheolau logarithm / Rules of logarithms log (π¦) = log (π) +π₯ log (π) Rheolau logarithm / Rules of logarithms log (π¦) =π₯ log (π) + log (π) Ail-drefnu / Re-arranging Yn cymharu efo / comparing with π¦=ππ₯+π, byddai plotio π₯ yn erbyn log (π¦) yn rhoi llinell syth efo graddiant log (π) a rhyngdoriadβπ¦ log (π) / plotting π₯ against log (π¦) would give a straight line with gradient log (π) and π¦βintercept log (π) . Model ebonyddol / An exponential model
7
Ffitio Cromlinau / Curve Fitting
Enghraifft / Example Casglwyd data mewn arbrawf am newidynnau π₯ ag π¦. Defnyddiwch y gwerthoedd data oβr tabl i ysgrifennuβr berthynas rhwng π₯ ag π¦ yn y ffurf π¦=π π π₯ . Data was collected in an experiment about the variables π₯ and π¦. Use the data values in the table to write the relationship between π₯ and π¦ in the form π¦=π π π₯ . Gallwn ffurfioβr tabl isod i dangos gwerthoedd π₯ a log (π¦) , ac ynaβu plotio ar ddiagram gwasgariad. We can form the following table to show the values of π₯ and log (π¦) , and then plot them on a scatter diagram. π 2 4 6 8 10 π¦ 9 53 306 1,761 10,145 π 2 4 6 8 10 log (π¦) 0.9542 1.7243 2.4857 3.2458 4.0063
8
Ffitio Cromlinau / Curve Fitting
π 2 4 6 8 10 log (π¦) 0.9542 1.7243 2.4857 3.2458 4.0063 log (π¦) Graddiant y graff yw tua / The gradient of the graph is approximately 3.8Γ·10=0.38. Rhyngdoriadβπ¦ y graff yw tua / The π¦βintercept of the graph is approximately 0.2. Yn cymharu efo / Comparing with log (π¦) =π₯ log (π) + log (π) mae gennym / we have log (π¦) =0.38π₯+0.2. Felly / Therefore π= π= π=2.40 (i 2 l.d. / to 2 d.p.). π=1.58 (i 2 l.d. / to 2 d.p.) Yn cymharu efo / Comparing with π¦=π π π₯ mae gennym y model / we have the model π¦=1.58 Γ2.4 π₯ . Llinell ffit orau / Line of best fit 4β0.2=3.8 10β0=10 π₯
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.