Presentation is loading. Please wait.

Presentation is loading. Please wait.

GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES

Similar presentations


Presentation on theme: "GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES"— Presentation transcript:

1 GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES
IN QCD: CHIRAL CORRECTIONS FROM SUM RULES C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa Work done with J. Bordes, P. Moodley, J. Peñarrocha, K. Schilcher QCD Montpellier

2 GMOR RELATION: A QCD LOW ENERGY THEOREM (NLO)

3 GMOR RELATION: A QCD LOW ENERGY THEOREM (NLO)

4 IMPORTANCE OF δπ 1) INTRINSIC
2) χPT: δπ = (4 Mπ2 / fπ2) ( 2 Lr8 – Hr2) 3) Lattice QCD: Lr8

5 SUBTLETIES RENORMALIZATION LOG [QUARK MASS] SINGULARITIES
NORMAL ORDERING HIGHER ORDER QUARK MASS CORRECTIONS Broadhurst & Generalis (81-82) Jamin & Münz (95) Chetyrkin, Dominguez, Pirjol, Schilcher (95) Dominguez, Nasrallah, Schilcher (08)

6 ∂µ Aµ (x) = 2 fπ2 Mπ2 φπ(x) + Σn 2 fn2 Mn2 φn(x)
IS δπ = 0 ??? QCD CORRECTIONS: HADRONIC CORRECTIONS: ∂µ Aµ (x) = 2 fπ2 Mπ2 φπ(x) + Σn 2 fn2 Mn2 φn(x)

7 Q C D SUM RULES Shifman-Vainshtein-Zakharov

8 QUARK-HADRON DUALITY

9 QCD FINITE ENERGY SUM RULE
Δ5(s): ANALYTIC KERNEL

10 PQCD

11 HADRONIC ψ5(s)

12 Realistic Spectral Function
Im G E2

13 PION RADIAL EXCITATIONS
π (1300): M = 1300 ± 100 MeV Γ = 200 – 600 MeV π (1800): M = 1812 ± 14 MeV Γ = 207 ± 13 MeV

14 PROBLEM SYSTEMATIC UNCERTAINTY
Hadronic pseudoscalar spectral function: NOT DIRECTLY MEASURABLE Knowledge of mass & width of resonances: NOT ENOUGH TO RECONSTRUCT SPECTRAL FUNCTION INELASTICITY, NON-RESONANT BACKGROUND, INTERFERENCE: ??? SYSTEMATIC UNCERTAINTY

15 QCD FINITE ENERGY SUM RULE
Δ5(s): ANALYTIC KERNEL

16 Δ5 (s) Δ5 (s) = 1 - a0 s – a1 s2 Δ5 (M12) = Δ5 (M22) = 0

17 Realistic Spectral Function IMPACT OF KERNEL Δ5(s)
Im G E2

18 Δ5 (s) ≡ Pn(s) ⇨ Legendre Polynomials (with global constraints)
TUNED TO STRONGLY QUENCH THE HADRONIC RESONANCE CONTRIBUTION TO THE FESR

19 FOPT αs(s0) & mq(s0) frozen
FOPT αs(s0) & mq(s0) frozen. RG ⇨ after integration CIPT αs(s0) & mq(s0) running. RG ⇨ before integration (µ2 = s) FIXED µ2 = 2 – 50 GeV2

20 INPUT αS (M2) = 0.344  0.0009 (Davier et al., 2008)
=  (Pich, 2010) (mu + md) / 2 = 4.1  0.2 MeV (Dominguez et al., 2009) = 3.9  0.5 MeV (Lattice ETMC, 2008) . O (m4) ; <αs G2> : NEGLIGIBLE . IMPACT OF π1(1300) & π2(1800): < 6 % (On account of Δ5(s))

21

22

23

24 δπ (%) δπ = 6.2  1.6 % 6.5  0.9 7.0  0.8 5.6  1.1 FOPT CIPT
δπ (%) FOPT CIPT FIXED µ µ2 = 2 – 50 GeV2 6.5  0.9 7.0  0.8 5.6  1.1 δπ = 6.2  1.6 %

25 Lr8 (νχ=Mρ) = (0.88  0.24)  10-3 Jamin (CHPT) 2002
δπ (%) Hr2 (νχ=Mρ) (in 10-3) 6.2  1.6 this work - (5.1  1.8) 4  2 Dominguez, Nasrallah, Schilcher * 4.7  1.7 Jamin** (4.3  1.3) (3.4  1.5) From a determination of <s-bar s> / <u-bar u> using same Δ5(s) ** From a determination of <s-bar s> / <u-bar u>

26 EARLIER DETERMINATIONS OF δπ
PQCD: only to two or three loop order PQCD: different values of αs HADRONIC: strongly model dependent spectral functions [Δ5(s) = 1]


Download ppt "GELL-MANN-OAKES-RENNER RELATION CHIRAL CORRECTIONS FROM SUM RULES"

Similar presentations


Ads by Google