Download presentation
Presentation is loading. Please wait.
Published byΒλάσιος Αξιώτης Modified over 5 years ago
1
Protein Identification Using Tandem Mass Spectrometry
Nathan Edwards Informatics Research Applied Biosystems
2
Outline Proteomics context Tandem mass spectrometry
Peptide fragmentation Peptide identification De novo Sequence database search Mascot screen shots Traps and pitfalls Summary
3
Proteomics Context High-throughput proteomics focus
(Differential) Quantitation How much of each protein is there? Identification What proteins are present? Two established workflows 2-D Gels LC-MS, LC-MALDI
4
Sample Preparation for Tandem Mass Spectrometry
Enzymatic Digest and Fractionation
5
Single Stage MS MS
6
Tandem Mass Spectrometry (MS/MS)
Acquire mass spectrum of sample Select interesting ion by m/z value Fragment the selected “parent” ion Acquire mass spectrum of parent ion’s fragments
7
Tandem Mass Spectrometry (MS/MS)
8
Peptide Fragmentation
Peptides consist of amino-acids arranged in a linear backbone. N-terminus H…-HN-CH-CO-NH-CH-CO-NH-CH-CO-…OH Ri-1 Ri Ri+1 C-terminus AA residuei-1 AA residuei AA residuei+1
9
Peptide Fragmentation
Peptides consist of amino-acids arranged in a linear backbone. N-terminus H+ H…-HN-CH-CO-NH-CH-CO-NH-CH-CO-…OH Ri-1 Ri Ri+1 C-terminus AA residuei-1 AA residuei AA residuei+1 Ionized peptide (addition of a proton)
10
Peptide Fragmentation
Peptides consist of amino-acids arranged in a linear backbone. N-terminus H+ H…-HN-CH-CO NH-CH-CO-NH-CH-CO-…OH Ri Ri+1 Ri-1 AA residuei-1 AA residuei AA residuei+1 C-terminus Fragmented peptide C-terminus fragment observed
11
Peptide Fragmentation
yn-i yn-i-1 -HN-CH-CO-NH-CH-CO-NH- Ri CH-R’ i+1 R” bi i+1 bi+1
12
Peptide Fragmentation
Peptide: S-G-F-L-E-E-D-E-L-K MW ion 88 b1 S GFLEEDELK y9 1080 145 b2 SG FLEEDELK y8 1022 292 b3 SGF LEEDELK y7 875 405 b4 SGFL EEDELK y6 762 534 b5 SGFLE EDELK y5 633 663 b6 SGFLEE DELK y4 504 778 b7 SGFLEED ELK y3 389 907 b8 SGFLEEDE LK y2 260 1020 b9 SGFLEEDEL K y1 147
13
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000
14
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 y2 y3 y4 y8 y9 m/z 250 500 750 1000
15
Peptide Fragmentation
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000
16
Peptide Identification
Given: The mass of the parent ion, and The MS/MS spectrum Output: The amino-acid sequence of the peptide
17
Peptide Identification
Two paradigms: De novo interpretation Sequence database search
18
De Novo Interpretation
100 % Intensity m/z 250 500 750 1000
19
De Novo Interpretation
100 % Intensity E L m/z 250 500 750 1000
20
De Novo Interpretation
100 % Intensity SGF L E E L F G E KL E D E D E L m/z 250 500 750 1000
21
De Novo Interpretation
Amino-acids have duplicate masses! Incomplete ladders create ambiguity. Noise peaks and unmodeled fragments create ambiguity “Best” de novo interpretation may have no biological relevance Current algorithms cannot model many aspects of peptide fragmentation Identifies relatively few peptides in high-throughput workflows
22
De Novo Interpretation
Amino-Acid Residual MW A Alanine M Methionine C Cysteine N Asparagine D Aspartic acid P Proline E Glutamic acid Q Glutamine F Phenylalanine R Arginine G Glycine S Serine H Histidine T Threonine I Isoleucine V Valine K Lysine W Tryptophan L Leucine Y Tyrosine
23
Sequence Database Search
Compares peptides from a protein sequence database with spectra Filter peptide candidates by Parent mass Digest motif Score each peptide against spectrum Generate all possible peptide fragments Match putative fragments with peaks Score and rank
24
Sequence Database Search
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions 100 % Intensity m/z 250 500 750 1000
25
Sequence Database Search
88 145 292 405 534 663 778 907 1020 1166 b ions S G F L E E D E L K 1166 1080 1022 875 762 633 504 389 260 147 y ions y6 100 y7 % Intensity y5 b3 b4 y2 y3 y4 b5 y8 b6 b8 b7 b9 y9 m/z 250 500 750 1000
26
Sequence Database Search
No need for complete ladders Possible to model all known peptide fragments Sequence permutations eliminated All candidates have some biological relevance Practical for high-throughput peptide identification Correct peptide might be missing from database!
27
Peptide Candidate Filtering
Digestion Enzyme: Trypsin Cuts just after K or R unless followed by a P. Basic residues (K & R) at C-terminal attract ionizing charge, leading to strong y-ions “Average” peptide length about amino-acids Must allow for “missed” cleavage sites
28
Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… No missed cleavage sites MKWVTFISLLFLFSSAYSRGVFR R DAHK SEVAHR FK DLGEENFK ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK …
29
Peptide Candidate Filtering
>ALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK… One missed cleavage site MKWVTFISLLFLFSSAYSRGVFRR RDAHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAFAQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK …
30
Peptide Candidate Filtering
Peptide molecular weight Only have m/z value Need to determine charge state Ion selection tolerance Mass for each amino-acid symbol? Monoisotopic vs. Average “Default” residual mass Depends on sample preparation protocol Cysteine almost always modified
31
Peptide Molecular Weight
Same peptide, i = # of C13 isotope i=1 i=2 i=3 i=4
32
Peptide Molecular Weight
Same peptide, i = # of C13 isotope i=1 i=2 i=3 i=4
33
Peptide Molecular Weight
…from “Isotopes” – An IonSource.Com Tutorial
34
Peptide Scoring Peptide fragments vary based on
The instrument The peptide’s amino-acid sequence The peptide’s charge state Etc… Search engines model peptide fragmentation to various degrees. Speed vs. sensitivity tradeoff y-ions & b-ions occur most frequently
35
Mascot Search Engine
36
Mascot MS/MS Ions Search
37
Mascot MS/MS Search Results
38
Mascot MS/MS Search Results
39
Mascot MS/MS Search Results
40
Mascot MS/MS Search Results
41
Mascot MS/MS Search Results
42
Mascot MS/MS Search Results
43
Mascot MS/MS Search Results
44
Mascot MS/MS Search Results
45
Mascot MS/MS Search Results
46
Mascot MS/MS Search Results
47
Sequence Database Search Traps and Pitfalls
Search options may eliminate the correct peptide Parent mass tolerance too small Fragment m/z tolerance too small Incorrect parent ion charge state Non-tryptic or semi-tryptic peptide Incorrect or unexpected modification Sequence database too conservative Unreliable taxonomy annotation
48
Sequence Database Search Traps and Pitfalls
Search options can cause infinite search times Variable modifications increase search times exponentially Non-tryptic search increases search time by two orders of magnitude Large sequence databases contain many irrelevant peptide candidates
49
Sequence Database Search Traps and Pitfalls
Best available peptide isn’t necessarily correct! Score statistics (e-values) are essential! What is the chance a peptide could score this well by chance alone? The wrong peptide can look correct if the right peptide is missing! Need scores (or e-values) that are invariant to spectrum quality and peptide properties
50
Sequence Database Search Traps and Pitfalls
Search engines often make incorrect assumptions about sample prep Proteins with lots of identified peptides are not more likely to be present Peptide identifications do not represent independent observations All proteins are not equally interesting to report
51
Sequence Database Search Traps and Pitfalls
Good spectral processing can make a big difference Poorly calibrated spectra require large m/z tolerances Poorly baselined spectra make small peaks hard to believe Poorly de-isotoped spectra have extra peaks and misleading charge state assignments
52
Summary Protein identification from tandem mass spectra is a key proteomics technology. Protein identifications should be treated with healthy skepticism. Look at all the evidence! Spectra remain unidentified for a variety of reasons. Lots of open algorithmic problems!
53
Further Reading Matrix Science (Mascot) Web Site
Seattle Proteome Center (ISB) Proteomic Mass Spectrometry Lab at The Scripps Research Institute fields.scripps.edu UCSF ProteinProspector prospector.ucsf.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.