Presentation is loading. Please wait.

Presentation is loading. Please wait.

Integration Volumes of revolution.

Similar presentations


Presentation on theme: "Integration Volumes of revolution."โ€” Presentation transcript:

1 Integration Volumes of revolution

2 FM Volumes of revolution II: modelling
KUS objectives BAT Find Volumes of revolution using Integration Starter: Find these integrals ๐‘ฅ๐‘ฅ๐‘ฅ๐ถ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘‘๐‘ฅ ๐‘ฅ๐‘ฅ๐‘ฅ

3 ๐‘ฅ =2 sin ๐‘ก , and ๐‘ฆ =2 cos ๐‘ก + 2, ๐œ‹ 6 โ‰ค๐‘กโ‰ค 11๐œ‹ 6
WB D1 The diagram shows a model of a goldfish bowl. The cross-section of the model is described by the curve with parametric equations ๐‘ฅ =2 sin ๐‘ก , and ๐‘ฆ =2 cos ๐‘ก + 2, ๐œ‹ 6 โ‰ค๐‘กโ‰ค 11๐œ‹ 6 Where the units of x and y are given in cm. The goldfish bowl volume is formed by rotating the curve around the y-axis to form a solid of revolution. a) Find the volume of the water required to fill the model to a height of 3 cm b) The real goldfish bowl has a maximum diameter of 48 cm. Find the volume of water needed to fill the real bowl to a corresponding height. 4 cm 3 cm ๐‘Ž) ๐‘‘๐‘ฆ ๐‘‘๐‘ก =โˆ’2 sin ๐‘ก ๐‘ฆ=0 โ†’๐‘ก=๐œ‹ ๐‘ฆ=3 โ†’๐‘ก= ๐œ‹ 3 , 5๐œ‹ 3 , Two values correspond to the two sides of the bowl ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’=๐œ‹ ๐œ‹ 5๐œ‹/ sin ๐‘ก 2 โˆ’2 sin ๐‘ก ๐‘‘๐‘ฅ =โˆ’8๐œ‹ ๐œ‹ 5๐œ‹/3 ๐‘ ๐‘–๐‘› 3 ๐‘ก ๐‘‘๐‘ฅ =โˆ’8๐œ‹ ๐œ‹ 5๐œ‹/3 sin ๐‘ก (1โˆ’ ๐‘๐‘œ๐‘  2 ๐‘ก) ๐‘‘๐‘ฅ =โˆ’8๐œ‹ ๐œ‹ 5๐œ‹/3 sin ๐‘ก โˆ’ sin ๐‘ก ๐‘๐‘œ๐‘  2 ๐‘ก ๐‘‘๐‘ฅ

4 WB D1 (part 2) ๐‘ฅ =2 sin ๐‘ก , and ๐‘ฆ =2 cos ๐‘ก + 2, ๐œ‹ 6 โ‰ค๐‘กโ‰ค 11๐œ‹ 6
a) Find the volume of the water required to fill the model to a height of 3 cm b) The real goldfish bowl has a maximum diameter of 48 cm. Find the volume of water needed to fill the real bowl to a corresponding height. =โˆ’8๐œ‹ ๐œ‹ 5๐œ‹/3 sin ๐‘ก โˆ’ sin ๐‘ก ๐‘๐‘œ๐‘  2 ๐‘ก ๐‘‘๐‘ฅ 4 cm 3 cm =โˆ’8๐œ‹ โˆ’ cos ๐‘ก โˆ’ 1 3 ๐‘๐‘œ๐‘  3 ๐‘ก 5๐œ‹/3 ๐œ‹ =โˆ’8๐œ‹ โˆ’ cos 5๐œ‹ 3 โˆ’ 1 3 ๐‘๐‘œ๐‘  3 5๐œ‹ 3 + cos ๐œ‹ + ๐‘๐‘œ๐‘  3 ๐œ‹ =โ€ฆ=9๐œ‹ ๐‘) ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘™๐‘’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ= 48 4 =12 ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘ค๐‘™=1728ร— 9๐œ‹ = ๐‘๐‘š 3 ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ= 12 2 =144 ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ= 12 3 =1728

5 NOW DO Ex 4D ๐‘ฆ=โˆ’ 1+ sin ๐‘ก to get sin ๐‘ก =โˆ’๐‘ฆโˆ’1
WB D The diagram shows the image of a gold pendant which has height 2 cm. the pendant is modelled by a solid of revolution of a curve C about the y-axis. The curve has parametric equations ๐‘ฅ= cos ๐‘ก sin 2๐‘ก and ๐‘ฆ=โˆ’ 1+ sin ๐‘ก , 0โ‰ค๐‘กโ‰ค2๐œ‹ a) Show that a Cartesian equation of the curve C is ๐‘ฅ 2 =โˆ’ ๐‘ฆ 4 +2 ๐‘ฆ (4) b) Hence, using the model, find in ๐‘๐‘š 3 , the volume of the pendant (4) First Rearrange ๐‘ฆ=โˆ’ 1+ sin ๐‘ก to get sin ๐‘ก =โˆ’๐‘ฆโˆ’1 ๐‘ฅ= cos ๐‘ก + sin ๐‘ก cos ๐‘ก = cos ๐‘ก 1+ sin ๐‘ก =โˆ’๐‘ฆ cos ๐‘ก ๐‘ฅ 2 = ๐‘ฆ 2 ๐‘๐‘œ๐‘  2 ๐‘ก = ๐‘ฆ 2 1โˆ’ ๐‘ ๐‘–๐‘› 2 ๐‘ก ๐‘ฅ 2 = ๐‘ฆ 2 1โˆ’ โˆ’๐‘ฆโˆ’1 2 = ๐‘ฆ โˆ’๐‘ฆ 2 โˆ’2๐‘ฆ =โˆ’ ๐‘ฆ 4 +2 ๐‘ฆ QED b) volume =๐œ‹ โˆ’2 0 ๐‘ฅ 2 ๐‘‘๐‘ฅ =๐œ‹ โˆ’ ๐‘ฆ 4 +2 ๐‘ฆ ๐‘‘๐‘ฅ =1.6๐œ‹ ๐‘๐‘š 3 NOW DO Ex 4D

6 One thing to improve is โ€“
KUS objectives BAT Find Volumes of revolution using Integration self-assess One thing learned is โ€“ One thing to improve is โ€“

7 END


Download ppt "Integration Volumes of revolution."

Similar presentations


Ads by Google