Download presentation
Presentation is loading. Please wait.
1
Integration Volumes of revolution
2
FM Volumes of revolution II: modelling
KUS objectives BAT Find Volumes of revolution using Integration Starter: Find these integrals ๐ฅ๐ฅ๐ฅ๐ถ ๐ฅ๐ฅ๐ฅ๐ฅ ๐ฅ๐ฅ๐ฅ๐๐ฅ ๐ฅ๐ฅ๐ฅ
3
๐ฅ =2 sin ๐ก , and ๐ฆ =2 cos ๐ก + 2, ๐ 6 โค๐กโค 11๐ 6
WB D1 The diagram shows a model of a goldfish bowl. The cross-section of the model is described by the curve with parametric equations ๐ฅ =2 sin ๐ก , and ๐ฆ =2 cos ๐ก + 2, ๐ 6 โค๐กโค 11๐ 6 Where the units of x and y are given in cm. The goldfish bowl volume is formed by rotating the curve around the y-axis to form a solid of revolution. a) Find the volume of the water required to fill the model to a height of 3 cm b) The real goldfish bowl has a maximum diameter of 48 cm. Find the volume of water needed to fill the real bowl to a corresponding height. 4 cm 3 cm ๐) ๐๐ฆ ๐๐ก =โ2 sin ๐ก ๐ฆ=0 โ๐ก=๐ ๐ฆ=3 โ๐ก= ๐ 3 , 5๐ 3 , Two values correspond to the two sides of the bowl ๐ฃ๐๐๐ข๐๐=๐ ๐ 5๐/ sin ๐ก 2 โ2 sin ๐ก ๐๐ฅ =โ8๐ ๐ 5๐/3 ๐ ๐๐ 3 ๐ก ๐๐ฅ =โ8๐ ๐ 5๐/3 sin ๐ก (1โ ๐๐๐ 2 ๐ก) ๐๐ฅ =โ8๐ ๐ 5๐/3 sin ๐ก โ sin ๐ก ๐๐๐ 2 ๐ก ๐๐ฅ
4
WB D1 (part 2) ๐ฅ =2 sin ๐ก , and ๐ฆ =2 cos ๐ก + 2, ๐ 6 โค๐กโค 11๐ 6
a) Find the volume of the water required to fill the model to a height of 3 cm b) The real goldfish bowl has a maximum diameter of 48 cm. Find the volume of water needed to fill the real bowl to a corresponding height. =โ8๐ ๐ 5๐/3 sin ๐ก โ sin ๐ก ๐๐๐ 2 ๐ก ๐๐ฅ 4 cm 3 cm =โ8๐ โ cos ๐ก โ 1 3 ๐๐๐ 3 ๐ก 5๐/3 ๐ =โ8๐ โ cos 5๐ 3 โ 1 3 ๐๐๐ 3 5๐ 3 + cos ๐ + ๐๐๐ 3 ๐ =โฆ=9๐ ๐) ๐๐๐๐๐๐ ๐ ๐๐๐๐ ๐๐๐๐ก๐๐= 48 4 =12 ๐๐๐๐ข๐๐ ๐๐ ๐กโ๐ ๐๐๐ค๐=1728ร 9๐ = ๐๐ 3 ๐๐๐๐ ๐๐๐๐ก๐๐= 12 2 =144 ๐ฃ๐๐๐ข๐๐ ๐๐๐๐ก๐๐= 12 3 =1728
5
NOW DO Ex 4D ๐ฆ=โ 1+ sin ๐ก to get sin ๐ก =โ๐ฆโ1
WB D The diagram shows the image of a gold pendant which has height 2 cm. the pendant is modelled by a solid of revolution of a curve C about the y-axis. The curve has parametric equations ๐ฅ= cos ๐ก sin 2๐ก and ๐ฆ=โ 1+ sin ๐ก , 0โค๐กโค2๐ a) Show that a Cartesian equation of the curve C is ๐ฅ 2 =โ ๐ฆ 4 +2 ๐ฆ (4) b) Hence, using the model, find in ๐๐ 3 , the volume of the pendant (4) First Rearrange ๐ฆ=โ 1+ sin ๐ก to get sin ๐ก =โ๐ฆโ1 ๐ฅ= cos ๐ก + sin ๐ก cos ๐ก = cos ๐ก 1+ sin ๐ก =โ๐ฆ cos ๐ก ๐ฅ 2 = ๐ฆ 2 ๐๐๐ 2 ๐ก = ๐ฆ 2 1โ ๐ ๐๐ 2 ๐ก ๐ฅ 2 = ๐ฆ 2 1โ โ๐ฆโ1 2 = ๐ฆ โ๐ฆ 2 โ2๐ฆ =โ ๐ฆ 4 +2 ๐ฆ QED b) volume =๐ โ2 0 ๐ฅ 2 ๐๐ฅ =๐ โ ๐ฆ 4 +2 ๐ฆ ๐๐ฅ =1.6๐ ๐๐ 3 NOW DO Ex 4D
6
One thing to improve is โ
KUS objectives BAT Find Volumes of revolution using Integration self-assess One thing learned is โ One thing to improve is โ
7
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.